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INTRODUCTION

We study in this paper the problem of the construction of subspaces of
approximants of a Hilbert space V defined as the domain of linear operators.

Usually, we introduce “‘a priori” subspaces of approximants and we study
their properties. For instance, if the space V is a space of functions or of
distributions, we choose spaces of approximants which are polynomials or
piecewise-polynomials (spline functions).

Another way of attacking this problem is to construct subspaces of
approximants which satisfy a given set of properties.

Consider, e.g., the so-called problem of “optimal interpolation” (see [1]
and its references). We have seen that if V is a Sobolev space H™(R?), the
solutions of this problem are piecewise-polynomials of degree 2m — 1 if
n = 1, but are linear combinations of the translations of the elementary
solution of (—4 -+ Ay if n > 1 (4 denotes the Laplacian).

Below, we shall study a more general problem which is better adapted
to the needs of the theory of approximation of solutions of linear problems.

The space V (of functions) we use is a Hilbert space, the domain of (one
or) several operator A* mapping V into a space F*.

The data of the problem are the following:

We introduce “discrete analogues” of the above items: a space V;
(of sequences) and operators 4;° mapping ¥, into space F’.

Moreover, we assume that there exist operators r,* which associate
with f* € F? a discrete element f,} = r,ft e F,'.

Finally, we supply V with a positive Hermitian bilinear form ((u, v))
and its associated seminorm || u || = ((u, u))*/2.
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The question we ask is:
Characterize the subspace of approximants u of ¥V (if any) satisfying

() riidfu = Aztu, (for all i),
(ii) || #|| < ||v| for every v such that r, A% = A,'u, for all i, where u,
ranges over V.

The problem of “optimal interpolation™ is the particular case where
Fi =V, F} =V, rt = r, (for every i) and where the operators 4° and
A;? are the identity mappings.

We shall give several characterizations of the solutions of this problem
and deduce several sufficient conditions for existence and uniqueness. In
particular, we shall prove “commutation” formulas which are useful for
proving convergence theorems.

Among the examples we list below, we find subspaces of approximants
we have already used for approximating solutions of differential problem
by finite-differences schemes (cf. [2, 4]).

1. GENERAL SITUATION

Let V and F be two Hilbert spaces and 4 a linear operator from ¥ into F.
Let us associate with a parameter 4 discrete spaces V5, and F;, and a linear
operator from ¥, into F, .

We introduce a linear operator r,° from F into F,, and a continuous
positive Hermitian bilinear form ((, v)). We denote by || u || = ((u, »))'/? the
associated seminorm.

Remark 1.1. This situation contains the case where V (resp. V3) is the
domain of several operators A¢ (resp. A,?) mapping V (resp. V;) into F*
(resp. Fy%). We then take F = [] Ft, F,, =[] Fi}, A = XA4¢ and A4, = XA4,°
(We denote by XA? the operator defined by XA¥(u) = (déu); € [ F*.) |

Let us denote by V' the dual of V| by (f, v) the duality pairing on V' x V
and by J the continuous linear operator from ¥ into V' defined by

Ju, v) = ((u, v)) forall w,veV. (1-D

Our problem is: Characterize the subset pu;, of V defined by u € pyu, if
and only if

i rlAu = Ay,
() hk hYh (1-2)
(ii) Jull < | v] for every v such that r,°Av = A,u; .
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We shall deduce our results from the following theorem:

THEOREM 1.1. Let us assume that the range of r,°A is closed.

An element u of 'V belongs to pyu, if and only if there exists an f;, € Fy,' such
that

: - 7 0'
(f) Ju=Ar)f, , (1-3)
(ll) rhOAu = Ahuh .

Proof. If u is a solution of the system (1-3), u satisfies (1-2)(i). On the
other hand, if »,°4v = 0, we obtain

lul? = (Ju,u) = (A}, ) = (fy,, 1,°Au + v))

1-4
= uu+ov) <|ullu-+tvl (-4

Since any solution of Eq. (1-2)(i) is equal to u + v where r,’4v =0,
we have obtained Eq. (1-2)(ii).

Conversely, let us assume that u € p,u;, . Then if v € ker(r,°4), we deduce
from Egs. (1-2) that

A w2 —u+ AP <0 for any v e ker(r,°A4). (1-5)
Letting A converge to 0, we deduce that
(u,v)) = (Ju,v) =0 for every v e ker(r,%4). (1-6)

In other words, Ju belongs to the annihilator of ker(r,°4) which is equal

to the range of its transpose A'ry’, since the range of r;,°4 (and thus, the range

of A’rY) is closed.
Therefore, there exists a solution f;, of Eq. (1-3)(i).

COROLLARY 1.1. Let N be the sbuspace {uec V :||u|l = 0}. If
N N ker(r,°4) = 0,
there exists at most one solution of Eq. (1-2).

Proof. 1If u and v belong to pyu;, , then u — v belongs to ker(r,’4) and
J(u — v) belongs to the annihilator of ker(r;°4). Therefore

lu—v|?2={u—v,u—v)=20 and u — ve NN ker(r,%4) = 0.
CoROLLARY 1.2. Let us assume that the range G(A;) of Ay is contained in

the closed range G(r;,°A) of r,°A. Assume, also, that N N ker(r,°4) = 0 and
that ker(r,°A) is complete for the norm || u||.
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Then pyu;, contains a unique element u and p,, is a linear operator from V,
into V such that

@ rlApuuy, = Ay,

(ii) | prun || << || v} for every v such that r,°4v = A,u, . (-7

Proof. The first assumption implies that there exists at least one solution
of the Eq. (1-2)(i). Let w be such a solution. On the other hand since
Ker(r,°4) is complete, there exists a unique orthogonal projection v of w
onto ker(r,°4). Then:

(w—uv,2))=Uw—1),z2)=0 for every =z e ker(r,04). (1-8)

Therefore u = w — v satisfies Eq. (1-2)(i) and Ju = J(w — v) belongs to the
range of A'r) (equal to the annihilator of ker(r,°4)). Then u belongs to
Prup, by Theorem 1.1 and is unique by Corollary 1.1.

Finally, we obtain the following corollary:

COROLLARY 1.3. Let us assume that || u || is a norm (i.e., N = 0) and that
rlA maps V onto the Hilbert space F, . Then the operator p, satisfying
Egs. (1-7) is equal to:

P, = T A (O AT A A, (1-9)

Proof. The only point to verify is that r,°4J2A4'ry’ is an isomorphism
from F,’ onto F;, . (Then, it is clear that u = p,u, is a solution of Eq. (1-3)).
But J-! is the canonical isometry from ¥’ onto V and it satisfies (( /, g))y =
(J-Y, g) (where ((f, g),- denotes the scalar product in the Hilbert space ¥’
and where || fll;» = ((f,f))%? is the dual norm to || u|)).

Then, if we supply F,' with the norm || f [lr,” = || A'rYf 11y, we see that
rlAJ1A'rY is the canonical isometry from F,’ onto F;, . Thus it is invertible.

Remark 1.2. The above results can be extended to the case where || # || is
no longer defined by a nonnegative Hermitian form. It is enough to assume
that || u |2 is Gateaux-differentiable and to replace J (defined by Eq. (1-1))
by the differential defined by:

(Ju,v) = lim A7 (| u | — || u — A0 [). (1-10)

Then Theorem 1-1 holds. Corollary 1.3 holds if we assume that ¥ and V' are
uniformly convex for the norm || u|}.

Remark 1.3. Theorem 1.1 implies that the subspace of approximants
Py, = U,er, Pritn 1 contained in the subspace P, defined by

JB, — A'TYE,. (1-11)
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2. A ComMmuTtaTtioN Formura (I)

We consider here the particular case where the seminorm || u | is | Au |
(where |f| denotes the norm in the Hilbert space F). Let us denote by K
the canonical isometry from F onto F’ and by p;° the operator from F;, into F
defined by

plu, = K (r,° Ky ) u, where r,° maps F onto F, . (2-1)

By Corollary 1.3, p,%u, is the unique solution of the problem of optimal
interpolation in F:

rmplu, =u, and | pu, | <|v| forevery vsuch that r.% = u;.
(2-2)

Moreover, p,°r,® is the orthogonal projector whose kernel is Ker(r,9).
We shall express in this section the subset p,u;, in terms of the operator p,°.

THEOREM 2.1. Let us assume that the range of rA is closed. Let
Wull = | Au | (where | | is the norm in the Hilbert space F) and let p,° be defined
by (2.1). Then the subset p,u; satisfies

Apatty, = prlAnuy, + (1 — pir®) G(A)®, (2-3)

where G(A)® is the (Hilbert space) orthogonal complement of the range G(A)
of A.

Proof. In this case, the operator J is equal to A’KA. By Theorem 1.1,
u belongs to puuy if and only if A'KAu = A'rYf, . In other words, we can
write this equation in the following form:

Au = K7r)f, + K7z where z € ker(4'). 2-4)

Applying now r,? to both sides of this relation and using Egs. (1-2)(i) and
(2-1), we deduce that

Au = p’Au + (1 — p°r,%)z  where z belongs to ker(4'). (2-5)

Conversely, if u is a solution of Eq. (2-5), we find that r,°4u = A,u;, and
that 4’KAu = Ju belongs to the range of A'ry) . Therefore, u belongs to
Dty . It remains to prove that K-!z belongs to G(4)®. But ker(4’) is the
annihilator of the range G(A) of A, and the canonical isometry K is an
isomorphism from the (Hilbert space) orthogonal complement G(4)® of
G(A) onto its annihilator G(4)* in F'.
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COROLLARY 2.1. Let us assume that the range of r,°A is closed and that

G(A)® C P,°, (where G(A) and P,° are the ranges of A and p,°, respectively.)

(2-6)
Then
Apnur, = pa®Apiy, - (2-7)
Eurthermore, if
kerd =0 and  p’G(A4;) C G(A) (2-8)

(where G(Ay,) is the range of A4;), then there exists a unique solution u belonging
to pyuy, and the operator py, satisfies the commutation formula (2-7).

(The proof is obvious.)
In particular, G(4)® = 0 if the range of A4 is dense in F.

COROLLARY 2.2. Let us assume that the range of r,°A is closed and that

i) ker(4) = 0,
(i) P0G(4;) CG(4)  and  r°G(4) C G(4,). @9)
Then there exists a linear operator 1, from V onto V; such that
(i)  paura is the orthogonal projecior (in V) onto P, = p,V, ,
(ii) Apyriu = pp°ri2Au. (2-10)
Proof. The best approximant p,ryu € Py, of u (in V) satisfies
(Au — Apyryu, Apyor)r = 0, forevery v,e V. 2-11)
Using the commutation formula (2-7), we deduce that
A, Y K(Au — p,°r,u) = 0. (2-12)

We can write this equality in the form
(P} Kp,%) A,r,u = py KAu + z,, , where z, belongs to ker (4,).
(2-13)
By Eq. (2-1), we notice that we can write r,° = (p5 Kp,°)~'p,°K. Thus,

we have obtained the relation

Ay —rAu = (p¥Kp, )1z, , where z, eker(4,’). (2-14)

R
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Since 7,°G(4) C G(A,), Aprwu — ri’Au belongs to the range G(4;) of 4, .
On the other hand, pY Kp,° is the canonical isometry from F,, onto F;’ (when
either F, is supplied with the norm | p,%; | or F,’ is supplied with the norm
| 9%, | 7). Therefore, when z, ranges over ker(4,') = G(4xn)*, (P Kpr%) 'z,
ranges over the (Hilbert space) orthogonal complement G(A4,)® of G(4,)
in F, .

So, r,lAu = Apr,u since

Ayt — rAu € G(Ay) N (4)® = 0. (2-15)

Therefore, Apyriu = pplApru = pilr,Au.

Remark 2.2. The following result has important consequences: If
J — pp°ry®f converges to 0 in F as A — 0, then u — pyriu converges to 0 in
V (supplied with the seminorm || u || == | Au |).

We notice also that the convergence properties do not depend on the
choice of a particular operator A4, (satisfying (2-9)(ii)). In particular, the
error functions of p, do not depend on the choice of A, ; if U is a subspace
of ¥V supplied with a stronger topology, the error function e,*(p;) is defined
by

eg"(pr) = |1 — purnllw.my = su[p] | u — ppraullv/llul
ue

= sup (1 — pa°ra®) Au |/l uly - (2-16)

Let us suppose now that ¥V is contained in F with a stronger topology and
that both 4 and A, are isomorphisms. We thus can define the error function

ey (pn):
ey*(pr) = sup in£ | u— pavn /il ully (2-17)

uelU vV,
and, if V is a finite-dimensional space, the stability function s,7(p;):

spf(pn) = sup || patts v/l Prvn | = sup | pAnrs /] Pavs | (2-18)

vpE€V, UREVY

We have characterized these functions as eigenvalues of operators (cf.
Ref. [3]). We deduce from Theorem 3.3 of Ref. [3] and from the formula
pr = A7'p,°A4,, the following corollary

COROLLARY 2.3. Let us assume that V is contained in F with a stronger
topology and that the operators A and A, are isomorphisms.

Then the error function e,(p,) and the stability function s,%(p,) depend
only on r;® and A and are independent of the choice of the operator A, .
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Proof. Since s, (pa)? = sup,, || pavs I2/] pavs |2 is achieved at a point u,
of the unit-ball of ¥V, supplied with the norm |p,v, |, the functional
| pnlAwon |/| | pavs | is differentiable at u, and its derivative vanishes (cf.
Ref. [3, Section 3]). We thus deduce that

A,'py Kp,*Au, = sy (p,)? (p, Kpy) w, = sy (p, ) (4,'py A KA p,°A) u,, .

Since A, is an isomorphism, this amounts to saying that s,7(p;)? is the
largest eigenvalue of the operator (p%' A" "*KA-1p,%(p% Kp,*) and does not
depend on A4, .

On the other hand, the error function e,f(p;) is equal to

sup | u — ppsau |/l ul,
uev

where p;s, is the orthogonal projector from F onto P, = p,V5; . It satisfies
DuSn = PP’ Kpi)'py'Ku. Since p, = A-'p,°A,, we see that ps, equals
AP pY A'1KA ;%) pY A'-1K and does not depend on 4, .

3. EXAMPLES

3.1. Construction of approximants of Sobolev spaces H™(R).

We consider the situation where F = L% R) and V is the Sobolev space
H™R) of functions u € L% R) such that the (weak) derivative D™u € L¥R).

We choose for A4 the operator D™. This operator is one-to-one and its
range G(D™) is dense in F.

The discrete analogues we shall choose are the spaces V), = F;, = [¥Z)
of square sommable sequences u, = (u,7);.z defined on the ring Z of integers,
and the operator 4, = V,™ of finite differences:

() = Ty = 5 0¢ ()t (3-1)

We introduce the operator r,° defined by

(G+1)h

() = h™ f u(x) dx. (3-2)

3
The assumptions of Corollary 2.2 are satisfied: the operator p,™ satisfying

D rD"py™uy = Vi™uy, (3-2)
(i) | D™py™uy | < | D™ | for every v such that r,°D™p = V™, ,
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is the operator satisfying the following commutation formula:
D™ py"uy, = pr®Vy"uy, (3-3)
where p,° is defined by Eq. (2-1). A simple computation shows that

Pilun, = Y uple; where ej(x) is the characteristic function

of the interval (jh, (j 4 1)h). (3-4)

But the solution of Eq. (3-3) is well known (cf. [4, 5, 7, 8, 9]).

Since p,™ is an operator of the form p,™u, = Y u,’mi,,(x) and since
Py = 3 (Cw a’0i) uy’ (where af = h~™(—1)*(12,)), we have to solve
the differential equation

D), (X)) = Zk:ak"ekh(X) = Vy"emn(x). (3-3)

The solution of Eq. (3-5) is miu(x) = mm((x/h) —j) where m,(x) is the
(m 4 1)-th fold convolution of the characteristic function of the interval (0,1).
The support of this function is contained in the interval (0, m + 1) and its
restriction to each interval (k, k 4- 1) is a polynomial of degree m.

Therefore, here again, “spline-functions” (i.c., piecewise-polynomial
functions) are the optimal solutions of a problem of approximation in the
Sobolev spaces H™(R).

Remark 3.1. It is possible to replace V,™ by any other operator 4.
In this case, the operator p, satisfying Eqs. (3-2) or (3-4) maps also a sequence
into the space of piecewise-polynomials. By Corollary 2.2, the convergence
properties are the same. But the support of the function 7 ,(x) will be no
longer compact.

The fact that m,,(x) has a compact support plays an important role. (When
these approximations are used in differential problems, the size of the
support of =) ,(x) is related to the number of nonzero diagonals of the
approximated matrix).

Remark 3.2. We obtain analogous results by replacing the regular
intervals (jh, (j -+ 1)A) by irregular intervals and the operator V,” by the
divided-difference operator (cf. [7-9].)

Remark 3.3. 1t is possible to replace D™ by any other nondegenerate
differential operator of order m which is one-to-one and which has a dense
range. Among the operators A4, , we would have to choose the one which
minimizes the size of the support of the functions ;’(x) such that pyu, =
> uyimy’(x). (If we choose 4; = 1, we have to solve a problem of optimal
interpolation; it is already known that, in this case, the functions m,’ do not
have a compact support for m > 1) cf. e.g., [1, 8]).
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3.2. Construction of approximants in the domain of a degenerate operator.

We shall give an example where A is a degenerate differential operator:

We choose
F = LZ(_l, +1), (3‘6)
V = {ue L¥—1, +1) such that (1 — x?) Due L¥—1, +1)}
and we take 4 defined by Au = (1 — x?) Du.
The discrete analogs will be
Vi = Fy = I¥2), Ap = V4. (3‘7)
We define r,° by
) ~tanh((j+1)h)
(r.%u)’ = (tanh((j + 1)h) — tanh(jh))~* J u(x)dx. (3-8)
tanh(5n)

The assumptions of Corollary 2.2 are satisfied: the operator p, which
satisfies

(i) r(d — x* Dppup, = Vyuy,

) (3-8)
(1) (1 — x®) Dppun | < (1 — x*) Do |
for every v such that r,°Dv = V,u,,
is the one satisfying
(1 — x*) Dpwup, = pr®Vatty (39
where p,° (defined by Eq. (2-1)) satisfies
Py, = Z ur’ejn(x) (3-10)

where 8, is the characteristic function of the interval (tanh(jk), tanh((j+1)A4)).
If we write p,u,, in the form Y u,’m;,(x), the function 7, is the solution of the
differential equation

(1 — x®) Dmp(x) = b (0;n(x) — O ina(X))- (3-11)
Thus,
mi(x) = h~Y(arctanh(x — j)) 0, — h'(arctanh(x —j — 2)) Oypn.  (3-16)

Therefore, the space P, of linear combinations of the functions 7, is a
space of approximants of the domain (1 — x2)D which are optimal in the
sense of Eq. (3-8).
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If we use these approximants to approximate differential equations of the
form —(1 — x2) D(a(x) Du) + 2xb(x) Du = f where a(x) and b(x) = ¢ > 0,
we shall obtain finite-differences schemes whose matrices have 3 nonzero
diagonals (cf., e.g., [4-5], for the construction of these schemes).

This method can be applied to many other situations.

3.3. Construction of approximants in spaces of functions of several variables.

We take F = L% R"). Let V be the space of the functions v of L*R")
such that D% = D --- D=y belongs to L* R"). We consider the following
operator:

Au = D = D --- D"y, 3-17

The discrete analogs will be V, = F, = [*(Z") and the operator A4,
defined by

Au, = VZi VZZ";L =V, %, . (3-18)

R
We define 7,2 by (r%u) = (hy -~ ho)™ [, u(x) dx where

myn = T Gk s G + 1) A

Therefore the approximants p,u, which satisfy

i) Dy, = Vyuy ,
.. (3-19)
(1) | D%puu, | < | Dw | for every v such that r,°D%w = V, %,

are the approximants defined by puu, = 3 upim(x/h —j) with 7{x) =
To @y " Ta,(Xn) (Where my(t) is the (g + 1)-th fold convolution of the
characteristic function of the interval (0, 1)). These approximants are studied
and used, for instance, in Refs. [4, 5].

Let us consider the case where

A =DYD, + -+ D,), A= V,3V,;
(3-20)

(thh)f — h—l(uh:/ _ uil—l ..... 7"—1)‘

The spaces V, F, V,, , F, and the operator r,° are the same. Then the approx-
imants p,u; which satisfy
(@) rDUDy + -+ D) partr, = V' Vouy,

() [ DUDy + -+ + Dp) putn | < [ DUDy + -+ + Dy)v|
for every v such that DY(D; + -+ + D)o = V,9V,u, ,

(3-21)

640/4/1-3
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are the approximants defined by pyu, = X u,/u/((x/h) — j) where
) 1
pi(x) = f mox — t) dt. (3-22)
0

(These approximants were introduced in Ref. [6].)

In these two cases, the optimal approximants are piecewise-polynomials
of multi-degrees ¢ and ¢ -+ 1, respectively.

Finally, let us consider the case where

V = H*™(R"), F = L¥R") and A = (—4/4=* + )™, (3-23)
We introduce the following analogs:
Vy = F, = I3(Z"); A = (a;f) is an infinite matrix. (3-24)

We consider r,° defined by (rp%u) == (hy -~ h,)t f,,,jh u(x) dx; then the
operator p,° defined by Eq. (2-1) satisfies p,%u* = 3 u,;’0;), , where 8, is the
characteristic function of m,; .

Then Corollary 2.2 implies that the approximants p,u;, satisfying

(1) 1 Apan = Anin (3-25)
(i) | Appu, | < | Av | for every v such that r,%4v = Azu,

satisfy also
Pty = Z uplmy, (3-26)
j

where 7, = X @’ A710,,:(%).

Let pn(x) = Qm™/m!) Pf(| x |"~ "2 K,,_(n,5(27 | x |) (where K is a Bessel
function, cf. [10, p. 47]) be the fundamental solution of 4. Then the approxi-
mants 7, are

(%) = ), @ (e * Ora}(X) (3-27)

where * denotes convolution.

4. COMMUTATION FORMULA (II)

In this section, we assume that both 4 e L(V, F) and r,° € L(F, F,) are
onto. We supply ¥ with the norm || u || defined by the scalar product

((ua U)) = (Jus U) (4'1)
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where J is the canonical isometry from ¥ onto V'. Then K = (4J714")1 is
the canonical isometry from F onto F’ when F’ is supplied with the norm
ALl .

Therefore, since r,® maps F onto F,, , we can associate with it the operator
pr? defined by

P} = K7y (r,°Kry) ! 4-2)
which satisfies
W) rOplu, = u, for every u, € F; , @3
) | plunlir <livllr for every v such that r,% = u, .

By Corollary 1.3, the solution p,u;, of the problem
) r’Apuun, = Aty
(4-4)
(i) | praur, || < | v}] for every v such that r,°4Av = Au; ,

is given by p;, = J14'Kp,°4, . We shall give another interpretation of this
formula. Let us introduce the operator L defined by:

(Lu, v) = ((u, v)) for every ueV, and every veZ = ker 4.  (4-5)

The operator L maps V into the dual Z’ of Z.

THEOREM 4.1. Let us assume that A and r,° are surjective and that ((u, v))
is a nondegenerate scalar product of the Hilbert space V. Then the solution
Dty of (4-4) is the solution of

(l) Lphuh = 0,
.. (4-6)
(1) Appup, = pp’Anty ,

where the operators p,® and L are defined by Egs. (4-2) and (4-5).
Proof. Since Jpyu;, = A Kpylu; , we deduce that

(Jpaty , v) = (Lppuy, , v) = (KppPApuy, , Av) = 0 for every ve Z = ker A.
7)

So Lpyu, = 0. On the other hand,
Apnun, = (AJA") Kpp® sy, = K Kpp®Apu, = paAnuty, . (4-8)

Therefore, pyuy, is the solution of the problem (4-6). Conversely, let us assume
that p,u, satisfies the problem (4.6). Since Lp,u;, = 0, Jp,u; belongs to the
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annihilator Z+ of Z (in V7). Since Z is the kernel of 4 and since 4 is onto,
A’ is an isomorphism from F’ onto Z*. Thus, there exists a unique element
Bpyuy, of Z+ such that ’

Jphuh = A'Bphuh . (4'9)

But KA4J1 is a left inverse of A’ since KAJ'4A’ = KK-! = 1. Applying this
operator to both members of Eq. (4-9), we deduce that

Bpyun, = KApuun = Kpp*Apuy, . (4-10)

Thus, Jpyuy, = A'Bpyu, = A'Kp;°Ayu, . By Corollary 1.3, this implies
that p,u, is the solution of the problem (4-4).

Remark 4.1. Since Z' = V’|Z*, Equation (4-6)(I) amounts to saying that
Lpyu, € Z+4. (4-11)
COROLLARY 4.1. Let us assume the hypotheses of Theorem 4.1. Let r, be

the operator from V onto V,, such that pyr), is the orthogonal projector from V
onto P, = p,V, . Then, if A, is onto, the following commutation formula holds:

Ahrhu = rhOAhuh . (4'12)

Therefore, the projectors pyry, and p,°r.° are related by

0 Lpwryu = 0,

4-13
(i) Apyriu = pplri,°Au. *-13)

Proof. Since (Ju — Jpuray, ppoy) = 0 for any v, € V5, we deduce that
pi'Ju = p,'Ipyryu. Since Jp, = A'Kp,°A4; , this equation can be written in
the form

A,/ (py KAu — p)'Kp,°A,r,u). (4-14)
This implies that
A,ru = (pyKp,)™ p) KAu, (4-15)

since we have assumed that 4, is onto. Now, it is easy to check that we can
write r,® = (p} Kp,?)~pY K. Thus, Eq. (4-12) holds.

ExaMpLE 4.1. Assume that V = D(A4) is the domain of a closed
unbounded operator A of a Hilbert space F (identified with its dual). We
assume, moreover, that

A maps V = D(A) onto F; (4-16)
D(A) is supplied with the graph norm |[u [? = (| du |% + {u |3)'2
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Let Z be the kernel of A. Then the operator L is defined by

(Lu, v) = ((u, v)) = (Au, Av) + (u,v) = (1, v) forevery veZ. (4-17)
We thus deduce the following corollary:
COROLLARY 4.2. Let V be the domain of a closed unbounded operator A

of a Hilbert space F. Let us assume the conditions (4-16). Then the solution
Py of the problem (4-4) is the unique solution of

@ prup € Z+ (where Z = ker A),
) h4h (4_18)
(if) Apnur, = p®Anun -
Proof. By Eq. (4-6)(i), Lp,u, = 0. By Eq. (4-17), this amounts to
(Lpnus, , v) = (paity, v) =0 for every veZ. (4-19)

This implies (4-18)(i)
Let us consider a more general situation. We assume that there exist two
continuous operators A and 6 such that:
@) A maps V onto a Hilbert space F,
(i) 8 maps V onto a Hilbert space 7, (4-20)
(iii) V is the direct sum of V, = ker 6 and Z = ker 4.

We supply the space ¥V with the scalar product
((u, v)) = (Au, Av) + {8u, 8v), (4-21)
where ( , ) and { , ) are the scalar products of F and T, respectively. Then

V is a Hilbert space for this new scalar product.

COROLLARY 4.3. Let us assume conditions (4-20) and Egq. (4-21). If r,°
maps F onto F,, , the solution pyu,, of the problem (4-4) is the solution of

0 Sppup, = 0,
. w 4-22)
(i) Appiy, = pr®Antin, -
Proof. In this case, the operator L is defined by
(Lu, v) = {bu, dv) = (8'du, v) for any veZ. (4-23)

So the equation Lp,u; = 0 is equivalent to &'8p,u;, € Z+.

On the other hand, 8’ is an isomorphism from 7’ onto V. Therefore,
8'dppuy € Z*+ N Vit = 0 (since ¥V is the direct sum of ¥, and Z). This implies
that dp,u; = 0.
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