Remarks about the Construction of Optimal Subspaces of Approximants of a Hilbert Space

Jean-Pierre Aubin
Division of Mathematical Sciences, Purdue University, Lafayette, Indiana 47907
Communicated by I. J. Schoenberg

Received September 1, 1969

Introduction

We study in this paper the problem of the construction of subspaces of approximants of a Hilbert space V defined as the domain of linear operators.

Usually, we introduce "a priori" subspaces of approximants and we study their properties. For instance, if the space V is a space of functions or of distributions, we choose spaces of approximants which are polynomials or piecewise-polynomials (spline functions).

Another way of attacking this problem is to construct subspaces of approximants which satisfy a given set of properties.
Consider, e.g., the so-called problem of "optimal interpolation" (see [1] and its references). We have seen that if V is a Sobolev space $H^{m}\left(R^{n}\right)$, the solutions of this problem are piecewise-polynomials of degree $2 m-1$ if $n=1$, but are linear combinations of the translations of the elementary solution of $(-\Delta+\lambda)^{n}$ if $n>1$ (Δ denotes the Laplacian).
Below, we shall study a more general problem which is better adapted to the needs of the theory of approximation of solutions of linear problems.
The space V (of functions) we use is a Hilbert space, the domain of (one or) several operator A^{i} mapping V into a space F^{i}.
The data of the problem are the following:
We introduce "discrete analogues" of the above items: a space V_{h} (of sequences) and operators $A_{h}{ }^{i}$ mapping V_{h} into space $F_{h}{ }^{i}$.

Moreover, we assume that there exist operators $r_{h}{ }^{i}$ which associate with $f^{i} \in F^{i}$ a discrete element $f_{h}{ }^{i}=r_{n}{ }^{i} f^{i} \in F_{h}{ }^{i}$.

Finally, we supply V with a positive Hermitian bilinear form $((u, v))$ and its associated seminorm $\|u\|=((u, u))^{1 / 2}$.

The question we ask is:
Characterize the subspace of approximants u of V (if any) satisfying
(i) $r_{h}{ }^{i} A^{i} u=A_{h}{ }^{i} u_{h}$ (for all i),
(ii) $\|u\| \leqslant\|v\|$ for every v such that $r_{h}{ }^{i} A^{i} v=A_{h}{ }^{i} u_{h}$ for all i, where u_{h} ranges over V_{h}.

The problem of "optimal interpolation" is the particular case where $F^{i}=V, F_{h}{ }^{i}=V_{h}, r_{h}{ }^{i}=r_{h}$ (for every i) and where the operators A^{i} and $A_{h}{ }^{i}$ are the identity mappings.

We shall give several characterizations of the solutions of this problem and deduce several sufficient conditions for existence and uniqueness. In particular, we shall prove "commutation" formulas which are useful for proving convergence theorems.

Among the examples we list below, we find subspaces of approximants we have already used for approximating solutions of differential problem by finite-differences schemes (cf. [2, 4]).

1. General situation

Let V and F be two Hilbert spaces and A a linear operator from V into F. Let us associate with a parameter h discrete spaces V_{h} and F_{h} and a linear operator from V_{h} into F_{h}.

We introduce a linear operator $r_{h}{ }^{0}$ from F into F_{h}, and a continuous positive Hermitian bilinear form $((u, v))$. We denote by $\|u\|=((u, u))^{1 / 2}$ the associated seminorm.

Remark 1.1. This situation contains the case where $V\left(\right.$ resp. V_{h}) is the domain of several operators A^{i} (resp. $A_{h}{ }^{i}$) mapping V (resp. V_{h}) into F^{i} (resp. $F_{h}{ }^{i}$). We then take $F=\Pi F^{i}, F_{h}=\Pi F_{h}{ }^{i}, A=X A^{i}$ and $A_{h}=X A_{h}{ }^{i}$. (We denote by $X A^{i}$ the operator defined by $X A^{i}(u)=\left(A^{i} u\right)_{i} \in \Pi F^{i}$.)

Let us denote by V^{\prime} the dual of V, by (f, v) the duality pairing on $V^{\prime} \times V$ and by J the continuous linear operator from V into V^{\prime} defined by

$$
\begin{equation*}
(J u, v)=((u, v)) \quad \text { for all } \quad u, v \in V \tag{1-1}
\end{equation*}
$$

Our problem is: Characterize the subset $p_{h} u_{h}$ of V defined by $u \in p_{h} u_{h}$ if and only if
(i) $\quad r_{h}{ }^{0} A u=A_{h} u_{h}$,
(ii) $\quad\|u\| \leqslant\|v\|$ for every v such that $r_{n}{ }^{0} A v=A_{h} u_{h}$.

We shall deduce our results from the following theorem:
Theorem 1.1. Let us assume that the range of $r_{h}{ }^{0} A$ is closed.
An element u of V belongs to $p_{h} u_{h}$ if and only if there exists an $f_{h} \in F_{h}{ }^{\prime}$ such that

$$
\begin{align*}
J u & =A^{\prime} r_{h}^{0} f_{h}, \tag{i}\\
r_{h}{ }^{0} A u & =A_{h} u_{h} . \tag{1-3}
\end{align*}
$$

Proof. If u is a solution of the system (1-3), u satisfies (1-2)(i). On the other hand, if $r_{h}{ }^{0} A v=0$, we obtain

$$
\begin{align*}
\|u\|^{2} & =(J u, u)=\left(A^{\prime} r_{h}^{0} f_{h}, u\right)=\left(f_{h}, r_{h}^{0} A(u+v)\right) \tag{1-4}\\
& =(J u, u+v) \leqslant\|u\|\|u+v\| .
\end{align*}
$$

Since any solution of Eq. (1-2)(i) is equal to $u+v$ where $r_{h}{ }^{0} A v=0$, we have obtained Eq. (1-2)(ii).

Conversely, let us assume that $u \in p_{h} u_{h}$. Then if $v \in \operatorname{ker}\left(r_{h}{ }^{0} A\right)$, we deduce from Eqs. (1-2) that

$$
\begin{equation*}
\lambda^{-1}\left(\|u\|^{2}-\|u+\lambda v\|^{2}\right) \leqslant 0 \quad \text { for any } \quad v \in \operatorname{ker}\left(r_{h}{ }^{0} A\right) \tag{1-5}
\end{equation*}
$$

Letting λ converge to 0 , we deduce that

$$
\begin{equation*}
((u, v))=(J u, v)=0 \quad \text { for every } \quad v \in \operatorname{ker}\left(r_{h}{ }^{0} A\right) \tag{1-6}
\end{equation*}
$$

In other words, $J u$ belongs to the annihilator of $\operatorname{ker}\left(r_{h}{ }^{0} A\right)$ which is equal to the range of its transpose $A^{\prime} r_{h}^{0 \prime}$, since the range of $r_{h}{ }^{0} A$ (and thus, the range of $A^{\prime} r_{h}^{0 \prime}$) is closed.

Therefore, there exists a solution f_{h} of Eq. (1-3)(i).
Corollary 1.1. Let N be the sbuspace $\{u \in V:\|u\|=0\}$. If

$$
N \cap \operatorname{ker}\left(r_{h}^{0} A\right)=0
$$

there exists at most one solution of Eq. (1-2).
Proof. If u and v belong to $p_{h} u_{h}$, then $u-v$ belongs to $\operatorname{ker}\left(r_{h}{ }^{0} A\right)$ and $J(u-v)$ belongs to the annihilator of $\operatorname{ker}\left(r_{h}{ }^{0} A\right)$. Therefore

$$
\|u-v\|^{2}=(J(u-v), u-v)=0 \quad \text { and } \quad u-v \in N \cap \operatorname{ker}\left(r_{h}^{0} A\right)=0
$$

Corollary 1.2. Let us assume that the range $G\left(A_{h}\right)$ of A_{h} is contained in the closed range $G\left(r_{h}{ }^{0} A\right)$ of $r_{h}{ }^{0} A$. Assume, also, that $N \cap \operatorname{ker}\left(r_{h}{ }^{0} A\right)=0$ and that $\operatorname{ker}\left(r_{h}{ }^{0} A\right)$ is complete for the norm $\|u\|$.

Then $p_{h} u_{h}$ contains a unique element u and p_{h} is a linear operator from V_{h} into V such that
(i) $r_{h}{ }^{0} A p_{h} u_{h}=A_{h} u_{h}$,
(ii) $\quad\left\|p_{h} u_{h}\right\| \leqslant\|v\|$ for every v such that $r_{h}{ }^{0} A v=A_{h} u_{h}$.

Proof. The first assumption implies that there exists at least one solution of the Eq. (1-2)(i). Let w be such a solution. On the other hand since $\operatorname{Ker}\left(r_{h}{ }^{0} A\right)$ is complete, there exists a unique orthogonal projection v of w onto $\operatorname{ker}\left(r_{n}{ }^{0} A\right)$. Then:

$$
\begin{equation*}
((w-v, z))=(J(w-v), z)=0 \quad \text { for every } \quad z \in \operatorname{ker}\left(r_{h}{ }^{0} A\right) . \tag{1-8}
\end{equation*}
$$

Therefore $u=w-v$ satisfies Eq. (1-2)(i) and $J u=J(w-v)$ belongs to the range of $A^{\prime} r_{h}^{0 \prime}$ (equal to the annihilator of $\operatorname{ker}\left(r_{h}{ }^{0} A\right)$). Then u belongs to $p_{h} u_{h}$ by Theorem 1.1 and is unique by Corollary 1.1.

Finally, we obtain the following corollary:
Corollary 1.3. Let us assume that $\|u\|$ is a norm (i.e., $N=0$) and that $r_{h}{ }^{0} A$ maps V onto the Hilbert space F_{h}. Then the operator p_{h} satisfying Eqs. (1-7) is equal to:

$$
\begin{equation*}
p_{h}=J^{-1} A^{\prime} r_{h}^{0}\left(r_{h}^{0} A J^{-1} A^{\prime} r_{h}^{0^{\prime}}\right)^{-1} A_{h} \tag{1-9}
\end{equation*}
$$

Proof. The only point to verify is that $r_{n}^{0} A^{-1} A^{\prime} r_{h}^{0 \prime}$ is an isomorphism from $F_{h}{ }^{\prime}$ onto F_{h}. (Then, it is clear that $u=p_{h} u_{h}$ is a solution of Eq. (1-3)). But J^{-1} is the canonical isometry from V^{\prime} onto V and it satisfies $((f, g))_{V^{\prime}}=$ $\left(J^{-1} f, g\right)$ (where $\left((f, g)_{V^{\prime}}\right.$ denotes the scalar product in the Hilbert space V^{\prime} and where $\|f\|_{V^{\prime}}=((f, f))_{V^{\prime}}^{1 / 2}$ is the dual norm to $\left.\|u\|\right)$.

Then, if we supply $F_{h}{ }^{\prime}$ with the norm $\left\|f_{h}\right\|_{F_{F^{\prime}}}=\left\|A^{\prime} r_{n}^{0} f_{h}\right\|_{V^{\prime}}$, we see that $r_{h}{ }^{0} A J^{-1} A^{\prime} r_{h}^{0 \prime}$ is the canonical isometry from $F_{h}{ }^{\prime \prime}$ onto F_{h}. Thus it is invertible.

Remark 1.2. The above results can be extended to the case where $\|u\|$ is no longer defined by a nonnegative Hermitian form. It is enough to assume that $\|u\|^{2}$ is Gâteaux-differentiable and to replace J (defined by Eq. (1-1)) by the differential defined by:

$$
\begin{equation*}
(J u, v)=\lim _{\lambda \rightarrow 0} \lambda^{-1}\left(\|u\|^{2}-\|u-\lambda v\|^{2}\right) . \tag{1-10}
\end{equation*}
$$

Then Theorem 1-1 holds. Corollary 1.3 holds if we assume that V and V^{\prime} are uniformly convex for the norm $\|u\|$.

Remark 1.3. Theorem 1.1 implies that the subspace of approximants $P_{h}=\bigcup_{u_{h} E F_{h}} p_{h} u_{h}$ is contained in the subspace P_{h} defined by

$$
\begin{equation*}
J \hat{P}_{h}=A^{\prime} r_{h}^{0} F_{h}^{\prime} \tag{1-11}
\end{equation*}
$$

2. A Commutation Formula (I)

We consider here the particular case where the seminorm $\|u\|$ is $|A u|$ (where $|f|$ denotes the norm in the Hilbert space F). Let us denote by K the canonical isometry from F onto F^{\prime} and by $p_{h}{ }^{0}$ the operator from F_{h} into F defined by

$$
\begin{equation*}
p_{h}{ }^{0} u_{h}=K^{-1} r_{h}^{0^{\prime}}\left(r_{h}{ }^{0} K^{-1} r_{h}^{r^{0}}\right)^{-1} u_{h}, \quad \text { where } r_{h}{ }^{0} \text { maps } F \text { onto } F_{h} . \tag{2-1}
\end{equation*}
$$

By Corollary $1.3, p_{h}{ }^{0} u_{h}$ is the unique solution of the problem of optimal interpolation in F :
$r_{h}{ }^{0} p_{h}{ }^{0} u_{h}=u_{h} \quad$ and $\quad\left|p_{h}{ }^{0} u_{h}\right| \leqslant|v| \quad$ for every v such that $\quad r_{h}{ }^{0} v=u_{h}$.

Moreover, $p_{h}{ }^{0}{ }^{0}{ }_{h}{ }^{0}$ is the orthogonal projector whose kernel is $\operatorname{Ker}\left(r_{h}{ }^{0}\right)$.
We shall express in this section the subset $p_{n} u_{n}$ in terms of the operator $p_{n}{ }^{0}$.
Theorem 2.1. Let us assume that the range of $r_{h}{ }^{0} A$ is closed. Let $\|u\|=|A u|$ (where $\left|\mid\right.$ is the norm in the Hilbert space F) and let $p_{n}{ }^{0}$ be defined by (2.1). Then the subset $p_{h} u_{h}$ satisfies

$$
\begin{equation*}
A p_{n} u_{h}=p_{h}{ }^{0} A_{h} u_{h}+\left(1-p_{h}{ }^{0} r_{h}{ }^{0}\right) G(A)^{\Theta}, \tag{2-3}
\end{equation*}
$$

where $G(A)^{\oplus}$ is the (Hilbert space) orthogonal complement of the range $G(A)$ of A.

Proof. In this case, the operator J is equal to $A^{\prime} K A$. By Theorem 1.1, u belongs to $p_{h} u_{h}$ if and only if $A^{\prime} K A u=A^{\prime} r_{h}^{0^{\prime}} f_{h}$. In other words, we can write this equation in the following form:

$$
\begin{equation*}
A u=K^{-1} r_{h}^{0^{\prime}} f_{h}+K^{-1} z \quad \text { where } \quad z \in \operatorname{ker}\left(A^{\prime}\right) \tag{2-4}
\end{equation*}
$$

Applying now $r_{h}{ }^{0}$ to both sides of this relation and using Eqs. (1-2)(i) and (2-1), we deduce that

$$
\begin{equation*}
A u=p_{h}{ }^{0} A_{h} u+\left(1-p_{h}{ }^{0} r_{h}{ }^{0}\right) z \quad \text { where } z \text { belongs to } \operatorname{ker}\left(A^{\prime}\right) . \tag{2-5}
\end{equation*}
$$

Conversely, if u is a solution of Eq. (2-5), we find that $r_{h}{ }^{0} A u=A_{h} u_{h}$ and that $A^{\prime} K A u=J u$ belongs to the range of $A^{\prime} r_{h}^{0^{\prime}}$. Therefore, u belongs to $p_{n} u_{n}$. It remains to prove that $K^{-1} z$ belongs to $G(A)^{\oplus}$. But $\operatorname{ker}\left(A^{\prime}\right)$ is the annibilator of the range $G(A)$ of A, and the canonical isometry K is an isomorphism from the (Hilbert space) orthogonal complement $G(A) \oplus$ of $G(A)$ onto its annihilator $G(A)^{\perp}$ in F^{\prime}.

Corollary 2.1. Let us assume that the range of $r_{h}{ }^{0} A$ is closed and that $G(A) \oplus \subset P_{h}{ }^{0}, \quad\left(\right.$ where $G(A)$ and $P_{h}{ }^{0}$ are the ranges of A and $p_{h}{ }^{0}$, respectively.)

Then

$$
\begin{equation*}
A p_{h} u_{h}=p_{h}{ }^{0} A_{h} u_{h} . \tag{2-7}
\end{equation*}
$$

Furthermore, if

$$
\begin{equation*}
\text { ker } A=0 \quad \text { and } \quad p_{h}{ }^{0} G\left(A_{h}\right) \subset G(A) \tag{2-8}
\end{equation*}
$$

(where $G\left(A_{h}\right)$ is the range of A_{h}), then there exists a unique solution u belonging to $p_{h} u_{h}$ and the operator p_{h} satisfies the commutation formula (2-7).
(The proof is obvious.)
In particular, $G(A)^{\oplus}=0$ if the range of A is dense in F.
Corollary 2.2. Let us assume that the range of $r_{h}{ }^{0} A$ is closed and that

$$
\begin{equation*}
\operatorname{ker}(A)=0 \tag{i}
\end{equation*}
$$

(ii) $\quad p_{h}{ }^{0} G\left(A_{h}\right) \subset G(A)$ and $r_{h}{ }^{0} G(A) \subset G\left(A_{h}\right)$.

Then there exists a linear operator r_{h} from V onto V_{h} such that
(i) $p_{h} r_{h}$ is the orthogonal projector (in V) onto $P_{h}=p_{h} V_{h}$,

$$
\begin{equation*}
A p_{h} r_{h} u=p_{h}{ }^{0} r_{h}{ }^{0} A u \tag{ii}
\end{equation*}
$$

Proof. The best approximant $p_{h} r_{h} u \in P_{h}$ of u (in V) satisfies

$$
\begin{equation*}
\left(A u-A p_{h} r_{h} u, A p_{h} v_{h}\right)_{F}=0, \quad \text { for every } \quad v_{h} \in V_{h} \tag{2-11}
\end{equation*}
$$

Using the commutation formula (2-7), we deduce that

$$
\begin{equation*}
A_{h}{ }^{\prime} p_{h}^{0^{\prime}} K\left(A u-p_{h}{ }^{0} r_{h} u\right)=0 . \tag{2-12}
\end{equation*}
$$

We can write this equality in the form

$$
\begin{equation*}
\left(p_{h}^{0^{\prime}} K p_{h}^{0}\right) A_{h} r_{h} u=p_{h}^{0 \prime} K A u+z_{h}, \quad \text { where } z_{h} \text { belongs to } \operatorname{ker}\left(A_{h}^{\prime}\right) \tag{2-13}
\end{equation*}
$$

By Eq. (2-1), we notice that we can write $r_{h}{ }^{0}=\left(p_{h}^{0 \prime} K p_{h}{ }^{0}\right)^{-1} p_{h}{ }^{0} K$. Thus, we have obtained the relation

$$
\begin{equation*}
A_{h} r_{h} u-r_{h}^{0} A u=\left(p_{h}^{0 \prime} K p_{h}^{0}\right)^{-1} z_{h}, \quad \text { where } \quad z_{h} \in \operatorname{ker}\left(A_{h}^{\prime}\right) \tag{2-14}
\end{equation*}
$$

Since $r_{h}{ }^{0} G(A) \subset G\left(A_{h}\right), A_{h} r_{h} u-r_{h}{ }^{0} A u$ belongs to the range $G\left(A_{h}\right)$ of A_{h}. On the other hand, $p_{h}^{0} K p_{h}{ }^{0}$ is the canonical isometry from F_{h} onto $F_{h}{ }^{\prime}$ (when either F_{h} is supplied with the norm $\left|p_{h}{ }^{0} f_{h}\right|$ or $F_{h}{ }^{\prime}$ is supplied with the norm $\left|r_{h}^{0 \prime} f_{h}\right|_{F^{\prime}}$). Therefore, when z_{h} ranges over $\operatorname{ker}\left(A_{h}{ }^{\prime}\right)=G\left(A_{h}\right)^{\perp},\left(p_{h}^{0 \prime} K p_{h}{ }^{0}\right)^{-1} z_{h}$ ranges over the (Hilbert space) orthogonal complement $G\left(A_{h}\right)^{\oplus}$ of $G\left(A_{h}\right)$ in F_{h}.

So, $r_{h}{ }^{0} A u=A_{h} r_{h} u$ since

$$
\begin{equation*}
A_{h} r_{h} u-r_{h}^{0} A u \in G\left(A_{h}\right) \cap\left(A_{h}\right)^{\oplus}=0 \tag{2-15}
\end{equation*}
$$

Therefore, $A p_{h} r_{h} u=p_{h}{ }^{0} A_{h} r_{h} u=p_{h}{ }^{0} r_{h}{ }^{0} A u$.
Remark 2.2. The following result has important consequences: If $f-p_{h}{ }^{0} r_{h}{ }^{0} f$ converges to 0 in F as $h \rightarrow 0$, then $u-p_{h} r_{h} u$ converges to 0 in V (supplied with the seminorm $\|u\|=|A u|$).

We notice also that the convergence properties do not depend on the choice of a particular operator A_{h} (satisfying (2-9)(ii)). In particular, the error functions of p_{h} do not depend on the choice of A_{h}; if U is a subspace of V supplied with a stronger topology, the error function $e_{U}^{V}\left(p_{h}\right)$ is defined by

$$
\begin{align*}
e_{U}^{V}\left(p_{h}\right) & =\left\|1-p_{h} r_{h}\right\|_{L(U . V)}=\sup _{u \in U}\left\|u-p_{h} r_{h} u\right\|_{V} /\|u\| \\
& =\sup _{u \in U}\left(1-p_{h}{ }^{0} r_{h}{ }^{0}\right) A u\|/\| u \|_{U} . \tag{2-16}
\end{align*}
$$

Let us suppose now that V is contained in F with a stronger topology and that both A and A_{h} are isomorphisms. We thus can define the error function $e_{V}{ }^{F}\left(p_{h}\right):$

$$
\begin{equation*}
e_{V}^{F}\left(p_{h}\right)=\sup _{u \in U} \inf _{v_{h} \in V_{h}}\left|u-p_{h} v_{h}\right| / /\|u\|_{V} \tag{2-17}
\end{equation*}
$$

and, if V_{h} is a finite-dimensional space, the stability function $s_{V}{ }^{F}\left(p_{h}\right)$:

$$
\begin{equation*}
s_{V}{ }^{F}\left(p_{h}\right)=\sup _{v_{h} \in V_{h}}\left\|p_{h} u_{h}\right\|_{V} /\left|p_{h} v_{h}\right|=\sup _{v_{h} \in V_{h}}\left|p_{h}{ }^{0} A_{h} r_{h}\right| /\left|p_{h} v_{h}\right| \tag{2-18}
\end{equation*}
$$

We have characterized these functions as eigenvalues of operators (cf. Ref. [3]). We deduce from Theorem 3.3 of Ref. [3] and from the formula $p_{h}=A^{-1} p_{h}{ }^{0} A_{h}$ the following corollary

Corollary 2.3. Let us assume that V is contained in F with a stronger topology and that the operators A and A_{h} are isomorphisms.

Then the error function $e_{V}{ }^{F}\left(p_{h}\right)$ and the stability function $s_{V}{ }^{F}\left(p_{h}\right)$ depend only on $r_{h}{ }^{0}$ and A and are independent of the choice of the operator A_{h}.

Proof. Since $s_{V}{ }^{F}\left(p_{h}\right)^{2}=\sup _{v_{h}}\left\|p_{h} v_{h}\right\|_{V}^{2} \|\left. p_{h} v_{h}\right|^{2}$ is achieved at a point u_{h} of the unit-ball of V_{h} supplied with the norm $\left|p_{h} v_{h}\right|$, the functional $\left|p_{h}{ }^{0} A_{h} v_{h}\right| /\left|\left|p_{h} v_{h}\right|\right.$ is differentiable at u_{h} and its derivative vanishes (cf. Ref. [3, Section 3]). We thus deduce that
$A_{h}{ }^{\prime} p_{h}^{0 \prime} K p_{h}^{0} A_{h} u_{h}=s_{V}{ }^{F}\left(p_{h}\right)^{2}\left(p_{h}{ }^{\prime} K p_{h}\right) u_{h}=s_{V}{ }^{F}\left(p_{h}\right)^{2}\left(A_{h}^{\prime} p_{h}^{0} A^{\prime-1} K A^{-1} p_{h}^{0} A_{h}\right) u_{h}$.
Since A_{h} is an isomorphism, this amounts to saying that $s_{V}{ }^{F}\left(p_{h}\right)^{2}$ is the largest eigenvalue of the operator $\left(p_{h}^{0 \prime} A^{\prime-1} K A^{-1} p_{h}{ }^{0}\right)^{-1}\left(p_{h}^{0 \prime} K p_{h}{ }^{0}\right)$ and does not depend on A_{h}.

On the other hand, the error function $e_{V}^{F}\left(p_{h}\right)$ is equal to

$$
\sup _{u \in V}\left|u-p_{h} s_{h} u\right| /\|u\|
$$

where $p_{h} s_{h}$ is the orthogonal projector from F onto $P_{h}=p_{h} V_{h}$. It satisfies $p_{h} s_{h}=p_{h}\left(p_{h}{ }^{\prime} K p_{h}\right)^{-1} p_{h}{ }^{\prime} K u$. Since $p_{h}=A^{-1} p_{h}{ }^{0} A_{h}$, we see that $p_{h} s_{h}$ equals $A^{-1} p_{h}{ }^{0}\left(p_{h}^{0 \prime} A^{\prime-1} K A^{-1} p_{h}{ }^{0}\right)^{-1} p_{h}^{0 \prime} A^{\prime-1} K$ and does not depend on A_{h}.

3. Examples

3.1. Construction of approximants of Sobolev spaces $H^{m}(R)$.

We consider the situation where $F=L^{2}(R)$ and V is the Sobolev space $H^{m}(R)$ of functions $u \in L^{2}(R)$ such that the (weak) derivative $D^{m} u \in L^{2}(R)$.

We choose for A the operator D^{m}. This operator is one-to-one and its range $G\left(D^{m}\right)$ is dense in F.

The discrete analogues we shall choose are the spaces $V_{h}=F_{h}=l^{2}(Z)$ of square sommable sequences $u_{h}=\left(u_{h}\right)_{j \in Z}$ defined on the ring Z of integers, and the operator $A_{h}=\nabla_{h}{ }^{m}$ of finite differences:

$$
\begin{equation*}
\left(A_{h} u_{h}\right)^{j}=\left(\nabla_{h}^{m} u_{h}\right)^{j}=\sum_{R=0}^{m}(-1)^{k}\binom{m}{k} u_{h}^{j-k} . \tag{3-1}
\end{equation*}
$$

We introduce the operator $r_{h}{ }^{0}$ defined by

$$
\begin{equation*}
\left(r_{h}^{0} u\right)^{j}=h^{-1} \int_{j h}^{(j+1) h} u(x) d x \tag{3-2}
\end{equation*}
$$

The assumptions of Corollary 2.2 are satisfied: the operator $p_{h}{ }^{m}$ satisfying
(i) $r_{h}{ }^{0} D^{m} p_{h}{ }^{m} u_{h}=\nabla_{h}{ }^{m} u_{h}$,
(ii) $\left|D^{m} p_{h}{ }^{m} u_{h}\right| \leqslant\left|D^{m} v\right|$ for every v such that $r_{h}{ }^{0} D^{m} v=\nabla_{h}{ }^{m} u_{h}$,
is the operator satisfying the following commutation formula:

$$
\begin{equation*}
D^{m} p_{h}{ }^{m} u_{h}=p_{h}{ }^{0} \nabla_{h}{ }^{m} u_{h}, \tag{3-3}
\end{equation*}
$$

where $p_{h}{ }^{0}$ is defined by Eq. (2-1). A simple computation shows that

$$
\begin{align*}
p_{h}{ }^{0} u_{h}=\sum_{\text {of the interval }(j h,(j+1) h) .} u_{h}^{j} e_{j h} \text { where } e_{j h}(x) \text { is the characteristic function } \tag{3-4}\\
\end{align*}
$$

But the solution of Eq. (3-3) is well known (cf. [4, 5, 7, 8, 9]).
Since $p_{h}{ }^{m}$ is an operator of the form $p_{h}{ }^{m} u_{h}=\sum u_{h}{ }^{j} \pi_{m h}^{j}(x)$ and since $p_{h}{ }^{0} u_{h}=\sum_{j}\left(\sum_{k} a_{k}{ }^{j} \theta_{k h}\right) u_{h}{ }^{j}$ (where $a_{k}{ }^{j}=h^{-m}(-1)^{k-j}\binom{m}{k-j}$, we have to solve the differential equation

$$
\begin{equation*}
D^{m}\left(\pi_{m h}^{j}(x)\right)=\sum_{k} a_{k}{ }^{j} e_{k h}(x)=\nabla_{h}{ }^{m} e_{j h}(x) \tag{3-5}
\end{equation*}
$$

The solution of Eq. (3-5) is $\pi_{m h}^{j}(x)=\pi_{m}((x / h)-j)$ where $\pi_{m}(x)$ is the $(m+1)$-th fold convolution of the characteristic function of the interval $(0,1)$. The support of this function is contained in the interval $(0, m+1)$ and its restriction to each interval $(k, k+1)$ is a polynomial of degree m.

Therefore, here again, "spline-functions" (i.e., piecewise-polynomial functions) are the optimal solutions of a problem of approximation in the Sobolev spaces $H^{m}(R)$.

Remark 3.1. It is possible to replace $\nabla_{h}{ }^{m}$ by any other operator A_{h}. In this case, the operator p_{h} satisfying Eqs. (3-2) or (3-4) maps also a sequence into the space of piecewise-polynomials. By Corollary 2.2, the convergence properties are the same. But the support of the function $\pi_{m h}^{i}(x)$ will be no longer compact.

The fact that $\pi_{m}(x)$ has a compact support plays an important role. (When these approximations are used in differential problems, the size of the support of $\pi_{m h}^{j}(x)$ is related to the number of nonzero diagonals of the approximated matrix).

Remark 3.2. We obtain analogous results by replacing the regular intervals $(j h,(j+1) h)$ by irregular intervals and the operator $\nabla_{h}{ }^{m}$ by the divided-difference operator (cf. [7-9].)

Remark 3.3. It is possible to replace D^{m} by any other nondegenerate differential operator of order m which is one-to-one and which has a dense range. Among the operators A_{h}, we would have to choose the one which minimizes the size of the support of the functions $\pi_{h}{ }^{j}(x)$ such that $p_{h} u_{h}=$ $\sum u_{h}{ }^{j} \pi_{h}{ }^{j}(x)$. (If we choose $A_{h}=1$, we have to solve a problem of optimal interpolation; it is already known that, in this case, the functions $\pi_{h}{ }^{j}$ do not have a compact support for $m>1$) cf. e.g., $[1,8]$).

3.2. Construction of approximants in the domain of a degenerate operator.

We shall give an example where A is a degenerate differential operator:
We choose

$$
\begin{gather*}
F=L^{2}(-1,+1), \tag{3-6}\\
V=\left\{u \in L^{2}(-1,+1) \text { such that }\left(1-x^{2}\right) D u \in L^{2}(-1,+1)\right\}
\end{gather*}
$$

and we take A defined by $A u=\left(1-x^{2}\right) D u$.
The discrete analogs will be

$$
\begin{equation*}
V_{h}=F_{h}=l^{2}(Z), \quad A_{h}=\nabla_{h} . \tag{3-7}
\end{equation*}
$$

We define $r_{h}{ }^{0}$ by

$$
\begin{equation*}
\left(r_{h}{ }^{0} u\right)^{j}=(\tanh ((j+1) h)-\tanh (j h))^{-1} \int_{\tanh (j h)}^{\tanh (j+1) h)} u(x) d x . \tag{3-8}
\end{equation*}
$$

The assumptions of Corollary 2.2 are satisfied: the operator p_{h} which satisfies
(i) $r_{h}{ }^{0}\left(1-x^{2}\right) D p_{h} u_{h}=\nabla_{h} u_{h}$,
(ii) $\quad\left|\left(1-x^{2}\right) D p_{n} u_{h}\right| \leqslant\left|\left(1-x^{2}\right) D v\right|$
for every v such that $r_{h}{ }^{0} D v=\nabla_{h} u_{h}$,
is the one satisfying

$$
\begin{equation*}
\left(1-x^{2}\right) D p_{h} u_{h}=p_{h}{ }^{0} \nabla_{h} u_{h} \tag{3-9}
\end{equation*}
$$

where $p_{h}{ }^{0}$ (defined by Eq. (2-1)) satisfies

$$
\begin{equation*}
p_{h}{ }^{0} u_{h}=\sum u_{h}{ }^{j} e_{j h}(x) \tag{3-10}
\end{equation*}
$$

where $\theta_{j h}$ is the characteristic function of the interval $(\tanh (j h), \tanh ((j+1) h))$. If we write $p_{k} u_{h}$ in the form $\sum u_{h}{ }^{j} \pi_{j h}(x)$, the function $\pi_{j h}$ is the solution of the differential equation

$$
\begin{equation*}
\left(1-x^{2}\right) D \pi_{j h}(x)=h^{-1}\left(\theta_{j h}(x)-\theta_{(j+1) h}(x)\right) . \tag{3-11}
\end{equation*}
$$

Thus,
$\pi_{j h}(x)=h^{-1}(\operatorname{arctanh}(x-j)) \theta_{j h}-h^{-1}(\operatorname{arctanh}(x-j-2)) \theta_{(j+1) h}$.
Therefore, the space P_{h} of linear combinations of the functions $\pi_{j h}$ is a space of approximants of the domain $\left(1-x^{2}\right) D$ which are optimal in the sense of Eq. (3-8).

If we use these approximants to approximate differential equations of the form - $\left(1-x^{2}\right) D(a(x) D u)+2 x b(x) D u=f$ where $a(x)$ and $b(x) \geqslant c>0$, we shall obtain finite-differences schemes whose matrices have 3 nonzero diagonals (cf., e.g., [4-5], for the construction of these schemes).

This method can be applied to many other situations.

3.3. Construction of approximants in spaces of functions of several variables.

We take $F=L^{2}\left(R^{n}\right)$. Let V be the space of the functions u of $L^{2}\left(R^{n}\right)$ such that $D^{q} u=D_{1}^{q_{1}} \cdots D_{n}^{q_{n}} u$ belongs to $L^{2}\left(R^{n}\right)$. We consider the following operator:

$$
\begin{equation*}
A u=D^{q} u=D_{1}^{q_{1}} \cdots D_{n}^{q_{n}} u \tag{3-17}
\end{equation*}
$$

The discrete analogs will be $V_{h}=F_{h}=l^{2}\left(Z^{n}\right)$ and the operator A_{h} defined by

$$
\begin{equation*}
A_{h} u_{h}=\nabla_{h_{1}}^{q_{1}} \cdots \nabla_{h_{n}}^{q_{n}} u_{h}=\nabla_{h}^{q} u_{h} . \tag{3-18}
\end{equation*}
$$

We define $r_{h}{ }^{0}$ by $\left(r_{h}{ }^{0} u\right)^{j}=\left(h_{1} \cdots h_{n}\right)^{-1} \int_{m_{j h}} u(x) d x$ where

$$
m_{j h}=\Pi\left(j_{k} h_{k},\left(j_{k}+1\right) h_{k}\right) .
$$

Therefore the approximants $p_{h} u_{h}$ which satisfy
(i) $r_{h}{ }^{0} D^{q} p_{h} u_{h}=\nabla_{h}{ }^{q} u_{h}$,
(ii) $\left|D^{q} p_{h} u_{h}\right| \leqslant\left|D^{q} v\right|$ for every v such that $r_{h}{ }^{0} D^{q} v=\nabla_{h}{ }^{a} v$,
are the approximants defined by $p_{h} u_{h}=\sum u_{n}{ }^{j} \pi_{l}(x / h-j)$ with $\pi_{q}(x)=$ $\pi_{q_{1}\left(x_{1}\right)} \cdots \pi_{q_{n}}\left(x_{n}\right)$ (where $\pi_{q}(t)$ is the ($q+1$)-th fold convolution of the characteristic function of the interval $(0,1)$). These approximants are studied and used, for instance, in Refs. [4, 5].

Let us consider the case where

$$
\begin{align*}
A= & D^{q}\left(D_{1}+\cdots+D_{n}\right), \quad A_{h}=\nabla_{h}{ }^{q} \hat{\nabla}_{h} ; \tag{3-20}\\
& \left(\hat{\nabla}_{h} u_{h}\right)^{j}=h^{-1}\left(u_{h}^{j}-u_{h}^{j_{1}-1, \ldots, j_{n}-1}\right) .
\end{align*}
$$

The spaces V, F, V_{h}, F_{h} and the operator $r_{h}{ }^{0}$ are the same. Then the approximants $p_{h} u_{h}$ which satisfy
(i) $r_{h}{ }^{0} D^{q}\left(D_{1}+\cdots+D_{n}\right) p_{h} u_{h}=\nabla_{h}{ }^{\hat{4}} \hat{\nabla}_{n} u_{h}$,
(ii) $\left|D^{a}\left(D_{1}+\cdots+D_{n}\right) p_{h} u_{h}\right| \leqslant\left|D^{a}\left(D_{1}+\cdots+D_{n}\right) v\right|$
for every v such that $D^{a}\left(D_{1}+\cdots+D_{n}\right) v=\nabla_{h}{ }^{q} \widehat{\nabla}_{h} u_{h}$,
are the approximants defined by $p_{h} u_{h}=\sum u_{h}{ }^{j} \mu{ }^{j}((x / h)-j)$ where

$$
\begin{equation*}
\mu_{q}^{j}(x)=\int_{0}^{1} \pi_{q}(x-t) d t \tag{3-22}
\end{equation*}
$$

(These approximants were introduced in Ref. [6].)
In these two cases, the optimal approximants are piecewise-polynomials of multi-degrees q and $q+1$, respectively.

Finally, let us consider the case where

$$
\begin{equation*}
V=H^{2 m}\left(R^{n}\right), \quad F=L^{2}\left(R^{n}\right) \quad \text { and } \quad A=\left(-\Delta / 4 \pi^{2}+1\right)^{m} \tag{3-23}
\end{equation*}
$$

We introduce the following analogs:

$$
\begin{equation*}
V_{h}=F_{h}=l^{2}\left(Z^{n}\right) ; \quad A_{h}=\left(a_{k}^{j}\right) \text { is an infinite matrix. } \tag{3-24}
\end{equation*}
$$

We consider $r_{h}{ }^{0}$ defined by $\left(r_{h}{ }^{0} u\right)^{j}=\left(h_{1} \cdots h_{n}\right)^{-1} \int_{m_{j h}} u(x) d x$; then the operator $p_{h}{ }^{0}$ defined by Eq. (2-1) satisfies $p_{h}{ }^{0} u^{h}=\sum u_{h}{ }^{j} \theta_{j h}$, where $\theta_{j h}$ is the characteristic function of $m_{j h}$.

Then Corollary 2.2 implies that the approximants $p_{h} u_{h}$ satisfying
(i) $r_{h}{ }^{0} A p_{h} u_{h}=A_{h} u_{h}$
(ii) $\quad\left|A p_{h} u_{h}\right| \leqslant|A v|$ for every v such that $r_{h}{ }^{0} A v=A_{h} u_{h}$
satisfy also

$$
\begin{equation*}
p_{h} u_{h}=\sum_{j} u_{h}^{j} \pi_{j h} \tag{3-26}
\end{equation*}
$$

where $\pi_{j h}=\sum_{k} a_{k}{ }^{j} A^{-1} \theta_{k h}(x)$.
Let $\mu_{m}(x)=\left(2 \pi^{m} / m!\right) P f\left(|x|^{m-(n / 2)} K_{m-(n / 2)}(2 \pi|x|)\right.$ (where K is a Bessel function, cf. [10, p. 47]) be the fundamental solution of A. Then the approximants $\pi_{j h}$ are

$$
\begin{equation*}
\pi_{j n}(x)=\sum_{k} a_{k}^{j}\left(\mu_{m} * \theta_{k h}\right)(x) \tag{3-27}
\end{equation*}
$$

where * denotes convolution.

4. Commutation formula (II)

In this section, we assume that both $A \in L(V, F)$ and $r_{h}{ }^{0} \in L\left(F, F_{h}\right)$ are onto. We supply V with the norm $\|u\|$ defined by the scalar product

$$
\begin{equation*}
((u, v))=(J u, v) \tag{4-1}
\end{equation*}
$$

where J is the canonical isometry from V onto V^{\prime}. Then $K=\left(A J^{-1} A^{\prime}\right)^{-1}$ is the canonical isometry from F onto F^{\prime} when F^{\prime} is supplied with the norm $\left\|A^{\prime} f\right\|_{F^{\prime}}$.

Therefore, since $r_{h}{ }^{0}$ maps F onto F_{h}, we can associate with it the operator $p_{h}{ }^{0}$ defined by

$$
\begin{equation*}
p_{h}^{0}=K^{-1} r_{h}^{0^{\prime}}\left(r_{h}^{0} K^{-1} r_{h}^{0^{\prime}}\right)^{-1} \tag{4-2}
\end{equation*}
$$

which satisfies
(i) $\quad r_{h}{ }^{0} p_{h}{ }^{0} u_{h}=u_{h} \quad$ for every $u_{h} \in F_{h}$,
(ii) $\left\|p_{h}{ }^{0} u_{h}\right\|_{F} \leqslant\|v\|_{F} \quad$ for every v such that $r_{h}{ }^{0} v=u_{h}$.

By Corollary 1.3, the solution $p_{h} u_{h}$ of the problem
(i) $r_{h}{ }^{0} A p_{h} u_{h}=A_{h} u_{h}$,
(ii) $\quad\left\|p_{h} u_{h}\right\| \leqslant\|v\|$ for every v such that $r_{h}{ }^{0} A v=A_{h} u_{h}$,
is given by $p_{h}=J^{-1} A^{\prime} K p_{h}{ }^{0} A_{h}$. We shall give another interpretation of this formula. Let us introduce the operator L defined by:
$(L u, v)=((u, v)) \quad$ for every $u \in V, \quad$ and every $v \in Z=\operatorname{ker} A$.
The operator L maps V into the dual Z^{\prime} of Z.
Theorem 4.1. Let us assume that A and $r_{h}{ }^{0}$ are surjective and that $((u, v))$ is a nondegenerate scalar product of the Hilbert space V. Then the solution $p_{h} u_{h}$ of (4-4) is the solution of
(i)

$$
\begin{equation*}
L p_{h} u_{h}=0 \tag{4-6}
\end{equation*}
$$

$$
\begin{equation*}
A p_{h} u_{h}=p_{h}^{0} A_{h} u_{h} \tag{ii}
\end{equation*}
$$

where the operators $p_{h}{ }^{0}$ and L are defined by Eqs. (4-2) and (4-5).
Proof. Since $J p_{h} u_{h}=A^{\prime} K p_{h}{ }^{0} u_{h}$, we deduce that
$\left(J p_{h} u_{h}, v\right)=\left(L p_{h} u_{h}, v\right)=\left(K p_{h}{ }^{0} A_{h} u_{h}, A v\right)=0 \quad$ for every $\quad v \in Z=\operatorname{ker} A$.

So $L p_{h} u_{h}=0$. On the other hand,

$$
\begin{equation*}
A p_{h} u_{h}=\left(A J^{-1} A^{\prime}\right) K p_{h}{ }^{0} A_{h} u_{h}=K^{-1} K p_{h}{ }^{0} A_{h} u_{h}={p_{h}}^{0} A_{h} u_{h} \tag{4-8}
\end{equation*}
$$

Therefore, $p_{h} u_{h}$ is the solution of the problem (4-6). Conversely, let us assume that $p_{h} u_{h}$ satisfies the problem (4.6). Since $L p_{h} u_{h}=0, J p_{h} u_{h}$ belongs to the
annihilator Z^{\perp} of Z (in V^{\prime}). Since Z is the kernel of A and since A is onto, A^{\prime} is an isomorphism from F^{\prime} onto Z^{\perp}. Thus, there exists a unique element $B p_{h} u_{h}$ of Z^{\perp} such that

$$
\begin{equation*}
J p_{h} u_{h}=A^{\prime} B p_{h} u_{h} \tag{4-9}
\end{equation*}
$$

But $K A J^{-1}$ is a left inverse of A^{\prime} since $K A J^{-1} A^{\prime}=K K^{-1}=1$. Applying this operator to both members of Eq. (4-9), we deduce that

$$
\begin{equation*}
B p_{h} u_{h}=K A p_{h} u_{h}=K p_{h}^{0} A_{h} u_{h} \tag{4-10}
\end{equation*}
$$

Thus, $J p_{h} u_{h}=A^{\prime} B p_{h} u_{h}=A^{\prime} K p_{h}{ }^{0} A_{h} u_{h}$. By Corollary 1.3, this implies that $p_{h} u_{h}$ is the solution of the problem (4-4).

Remark 4.1. Since $Z^{\prime}=V^{\prime} / Z^{\perp}$, Equation (4-6)(i) amounts to saying that

$$
\begin{equation*}
L p_{h} u_{h} \in Z^{\perp} \tag{4-11}
\end{equation*}
$$

Corollary 4.1. Let us assume the hypotheses of Theorem 4.1. Let r_{h} be the operator from V onto V_{h} such that $p_{h} r_{h}$ is the orthogonal projector from V onto $P_{h}=p_{h} V_{h}$. Then, if A_{h} is onto, the following commutation formula holds:

$$
\begin{equation*}
A_{h} r_{h} u=r_{h}{ }^{0} A_{h} u_{h} \tag{4-12}
\end{equation*}
$$

Therefore, the projectors $p_{h} r_{h}$ and $p_{h}{ }^{0} r_{h}{ }^{0}$ are related by

$$
\begin{equation*}
L p_{h} r_{h} u=0 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
A p_{h} r_{h} u=p_{h}{ }^{0} r_{h}{ }^{0} A u \tag{ii}
\end{equation*}
$$

Proof. Since $\left(J u-J p_{h} r_{h} u, p_{h} v_{h}\right)=0$ for any $v_{h} \in V_{h}$, we deduce that $p_{h}{ }^{\prime} J u=p_{h}{ }^{\prime} J p_{h} r_{h} u$. Since $J p_{h}=A^{\prime} K p_{h}{ }^{0} A_{h}$, this equation can be written in the form

$$
\begin{equation*}
A_{h}^{\prime}\left(p_{h}^{0 \prime} K A u-p_{h}^{0 \prime} K p_{h}^{0} A_{h} r_{h} u\right) \tag{4-14}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
A_{h} r_{h} u=\left(p_{h}^{\theta^{\prime}} K p_{h}^{\theta}\right)^{-1} p_{h}^{0^{\prime}} K A u \tag{4-15}
\end{equation*}
$$

since we have assumed that A_{h} is onto. Now, it is easy to check that we can write $r_{h}{ }^{0}=\left(p_{h}^{0 \prime} K p_{h}{ }^{0}\right)^{-1} p_{h}^{0 \prime} K$. Thus, Eq. (4-12) holds.

Example 4.1. Assume that $V=D(A)$ is the domain of a closed unbounded operator A of a Hilbert space F (identified with its dual). We assume, moreover, that
A maps $V=D(A)$ onto $F ;$
$D(A)$ is supplied with the graph norm $\|u\|^{2}=\left(|A u|_{F}^{2}+|u|_{F}^{2}\right)^{1 / 2}$.

Let Z be the kernel of A. Then the operator L is defined by
$(L u, v)=((u, v))=(A u, A v)+(u, v)=(u, v) \quad$ for every $\quad v \in Z$.
We thus deduce the following corollary:
Corollary 4.2. Let V be the domain of a closed unbounded operator A of a Hilbert space F. Let us assume the conditions (4-16). Then the solution $p_{h} u_{h}$ of the problem (4-4) is the unique solution of

$$
\begin{equation*}
p_{h} u_{h} \in Z^{\perp} \quad(\text { where } Z=\operatorname{ker} A), \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
A p_{h} u_{h}=p_{h}{ }^{0} A_{h} u_{h} . \tag{4-18}
\end{equation*}
$$

Proof. By Eq. (4-6)(i), $L p_{h} u_{h}=0$. By Eq. (4-17), this amounts to

$$
\begin{equation*}
\left(L p_{h} u_{h}, v\right)=\left(p_{h} u_{h}, v\right)=0 \quad \text { for every } \quad v \in Z . \tag{4-19}
\end{equation*}
$$

This implies (4-18)(i)
Let us consider a more general situation. We assume that there exist two continuous operators A and δ such that:
(i) A maps V onto a Hilbert space F,
(ii) δ maps V onto a Hilbert space T,
(iii) $\quad V$ is the direct sum of $V_{0}=\operatorname{ker} \delta$ and $Z=\operatorname{ker} A$.

We supply the space V with the scalar product

$$
\begin{equation*}
((u, v))=(A u, A v)+\langle\delta u, \delta v\rangle, \tag{4-21}
\end{equation*}
$$

where (,) and \langle,$\rangle are the scalar products of F$ and T, respectively. Then V is a Hilbert space for this new scalar product.

Corollary 4.3. Let us assume conditions (4-20) and Eq. (4-21). If $r_{h}{ }^{0}$ maps F onto F_{h}, the solution $p_{h} u_{h}$ of the problem (4-4) is the solution of

$$
\begin{equation*}
\delta p_{h} u_{h}=0, \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
A p_{h} u_{h}=p_{h}{ }^{0} A_{h} u_{h} . \tag{4-22}
\end{equation*}
$$

So the equation $L p_{h} u_{h}=0$ is equivalent to $\delta^{\prime} \delta p_{h} u_{h} \in Z^{\perp}$.
On the other hand, δ^{\prime} is an isomorphism from T^{\prime} onto $V_{0}{ }^{\perp}$. Therefore, $\delta^{\prime} \delta p_{h} u_{h} \in Z^{\perp} \cap V_{0}{ }^{\perp}=0$ (since V is the direct sum of V_{0} and Z). This implies that $\delta p_{h} u_{h}=0$.

References

1. J. P. Aubin, Approximation et interpolation optimales et "spline functions," J. Math. Anal. Appl. 24 (1968), 1-24.
2. J. P. Aubin, Best approximation of linear operators in Hilbert spaces, SIAM J. Num. Anal. 5 (1968), 518-521.
3. J. P. Aubin, Optimal approximation and characterization of the error and stability functions in Banach spaces, J. Approximation Theory 3 (1970), 430-444.
4. J. P. Aubin, Approximation des espaces de distributions et des opérateurs différentiels, Bull. Soc. Math. France 12 (1967), 1-139.
5. J. P. Aubin, Behavior of the error of the approximate solutions of boundary-value problems ..., Ann. Scuola. Norm. Sup. Pisa 21 (1967), 599-637.
6. F. Di Guglelmo, Construction d'approximations des espaces de Sobolev $H^{m}\left(\boldsymbol{R}^{n}\right), m$ entier positif, sur des réseaux en simplexes, C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A314-A317.
7. I. J. Schoenberg, On spline functions, in "Inequalities," (O. Shisha, Editor), pp. 255-291. Academic Press, New York/London, 1967.
8. I. J. Schoenberg, On interpolation by spline functions and its minimal properties, in "On Approximation Theory" (P. L. Butzer and J. Korevaar, Ed.s), Birkhäuser Verlag, Basel, 1964, pp. 109-129.
9. I. J. Schoenberg, On best approximation of linear operators, Indag. Math. 26 (1964), 155-163.
10. L. Schwartz, "Théorie des Distributions," New Edition, Hermann, Paris, 1966.
