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INTRODUCTION

We study in this paper the problem of the construction of subspaces of
approximants of a Hilbert space V defined as the domain of linear operators.

Usually, we introduce "a priori" subspaces of approximants and we study
their properties. For instance, if the space V is a space of functions or of
distributions, we choose spaces of approximants which are polynomials or
piecewise-polynomials (spline functions).

Another way of attacking this problem is to construct subspaces of
approximants which satisfy a given set of properties.

Consider, e.g., the so-called problem of "optimal interpolation" (see [I]
and its references). We have seen that if V is a Sobolev space Hm(Rn), the
solutions of this problem are piecewise-polynomials of degree 2m - I if
n = I, but are linear combinations of the translations of the elementary
solution of (-Ll + A)m if n > I (Ll denotes the Laplacian).

Below, we shall study a more general problem which is better adapted
to the needs of the theory of approximation of solutions of linear problems.

The space V (of functions) we use is a Hilbert space, the domain of (one
or) several operator Ai mapping V into a space P.

The data of the problem are the following:

We introduce "discrete analogues" of the above items: a space Vh

(of sequences) and operators Ahi mapping Vh into space Fhi.
Moreover, we assume that there exist operators rhi which associate

withfi EP a discrete element/hi = rh1i EFhi.
Finally, we supply V with a positive Hermitian bilinear form ((u, v))

and its associated seminorm II u II = ((u, U))1/2.
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The question we ask is:

Characterize the subspace of approximants U of V (if any) satisfying

(i) rhiAiu = AhiUh (for all i),

(ii) II U II ~ II v II for every v such that rhiAiv = AhiUh for all i, where Uh
ranges over Vh •

The problem of "optimal interpolation" is the particular case where
pi = V, Fhi = Vh, rhi = rh (for every i) and where the operators Ai and
Ahi are the identity mappings.

We shall give several characterizations of the solutions of this problem
and deduce several sufficient conditions for existence and uniqueness. In
particular, we shall prove "commutation" formulas which are useful for
proving convergence theorems.

Among the examples we list below, we find subspaces of approximants
we have already used for approximating solutions of differential problem
by finite-differences schemes (cf. [2,4]).

1. GENERAL SITUATION

Let V and F be two Hilbert spaces and A a linear operator from V into F.
Let us associate with a parameter h discrete spaces Vh and Fh and a linear
operator from Vh into Fh •

We introduce a linear operator rho from F into Fh , and a continuous
positive Hermitian bilinear form ((u, v)). We denote by II U II = ((u, U))l/2 the
associated seminorm.

Remark 1.1. This situation contains the case where V (resp. Vh) is the
domain of several operators Ai (resp. Ahi) mapping V (resp. Vh) into pi

(resp. Fhi). We then take F = TI pi, Fh = TI Fhi, A = XAi and Ah = XAhi.
(We denote by XAi the operator defined by XAi(U) = (AiU)i E TI pi.) I

Let us denote by V' the dual of V, by (f, v) the duality pairing on V' X V
and by J the continuous linear operator from V into V' defined by

(Ju, v) = ((u, v)) for all u, v E V. (1-1)

Our problem is: Characterize the subset PhUh of V defined by UE hUh if
and only if

(i)

(ii) II U II ~ II v II for every v such that rhoAv = AhUh .
(1-2)
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We shall deduce our results from the following theorem:
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THEOREM 1.1. Let us assume that the range of rh°A is closed.

An element u of V belongs to hUh (f and only (f there exists an fh E Fh' such
that

(i)

(ii)

Ju = A'r~'fh '

rhoAu = AhUh .
(1-3)

Proof If u is a solution of the system (1-3), u satisfies (1-2)(i). On the
other hand, if rhoAv = 0, we obtain

II U 11 2 = (Ju, u) = (A'r~'f~, u) = (h, rhOA(u + v))

= (Ju, u + v) :s;; I! u IIII u + v Ii·
(1-4)

Since any solution of Eq. (1-2)(i) is equal to u + v where rhoAv = 0,
we have obtained Eq. (1-2)(ii).

Conversely, let us assume that u E hUh' Then if v E ker(rh°A), we deduce
from Eqs. (1-2) that

Letting ,\ converge to 0, we deduce that

(1-5)

((u, v)) = (Ju, v) = ° for every v E ker(rhOA). (1-6)

In other words, Ju belongs to the annihilator of ker(rhOA) which is equal
to the range of its transpose A'r~', since the range of rhoA (and thus, the range
of A'rn is closed.

Therefore, there exists a solutionfh of Eq. (1-3)(i).

COROLLARY 1.1. Let N be the sbuspace {u E V: II u II = O}. If

N n ker(rhOA) = 0,

there exists at most one solution of Eq. (1-2).

Proof If u and v belong to hUh, then u - v belongs to ker(rhOA) and
J(u - v) belongs to the annihilator of ker(rhOA). Therefore

II u - v 11
2 = (J(u - v), u - v) = ° and

COROLLARY 1.2. Let us assume that the range G(Ah) of Ah is contained in
the closed range G(rhOA) of rhoA. Assume, also, that N n ker(rhOA) = °and
that ker(rh0A) is complete for the norm II u II.
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Then PhUh contains a unique element u and Ph is a linear operator from Vh
into V such that

(i)
(ii)

rhOAphUh = AhUh,
II PhUh II :(; II v II for every v such that rhoAv = AhUh'

(1-7)

Proof The first assumption implies that there exists at least one solution
of the Eq. (1-2)(i). Let w be such a solution. On the other hand since
Ker(rhOA) is complete, there exists a unique orthogonal projection v of w
onto ker(rh°A). Then:

«w - v, z» = (J(w - v), z) = 0 for every Z E ker(rhOA). (1-8)

Therefore U = w - v satisfies Eq. (1-2)(i) and Ju = J(w - v) belongs to the
range of A'r~' (equal to the annihilator of ker(rhOA». Then U belongs to
PhUh by Theorem 1.1 and is unique by Corollary 1.1.

Finally, we obtain the following corollary:

COROLLARY 1.3. Let us assume that II UII is a norm (i.e., N = 0) and that
rhoA maps V onto the Hilbert space Fh . Then the operator Ph satisfying
Eqs. (1-7) is equal to:

(1-9)

Proof The only point to verify is that rhoAJ-IA'rX' is an isomorphism
from Fh' onto Fh . (Then, it is clear that U = PhUh is a solution of Eq. (1-3».
But J-l is the canonical isometry from V' onto V and it satisfies «I, g»v' =
(J-lj, g) (where «I, g)v- denotes the scalar product in the Hilbert space V'
and where Ilfllv' = «(f,f)W~ is the dual norm to II U II).

Then, if we supply Fh' with the norm Ilfh IIF
h

' = II A'r~'fh [Iv' , we see that
rhoAJ-IA'r~' is the canonical isometry from Fh' onto Fh . Thus it is invertible.

Remark 1.2. The above results can be extended to the case where II U II is
no longer defined by a nonnegative Hermitian form. It is enough to assume
that II U 112 is Gateaux-differentiable and to replace J (defined by Eq. (1-1))
by the differential defined by:

(JU, v) = lim ,\-101 U11 2
- II U- ,\V 11

2).
A....O

(1-10)

Then Theorem 1-1 holds. Corollary 1.3 holds if we assume that Vand V' are
uniformly convex for the norm II U II.

Remark 1.3. Theorem 1.1 implies that the subspace of approximants
Ph = Uu eF PhUh is contained in the subspace Ph defined by

h h

(1-11)
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2. A COMMUTATION FORMULA (I)
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We consider here the particular case where the seminorm II u II is IAu I
(where If I denotes the norm in the Hilbert space F). Let us denote by K
the canonical isometry from F onto F' and by Pho the operator from Fh into F
defined by

where rhO maps F onto Fh • (2-1)

By Corollary 1.3, Ph°Uh is the unique solution of the problem of optimal
interpolation in F:

for every v such that rh°v = Uh .
(2-2)

Moreover, Phorho is the orthogonal projector whose kernel is Ker(rhO).
We shall express in this section the subset PhUh in terms of the operator Ph0.

THEOREM 2.1. Let us assume that the range of rhoA is closed. Let
II u II = I Au I (where II is the norm in the Hilbert space F) and letPho be defined
by (2.1). Then the subset PhUh satisfies

(2-3)

where G(A)EB is the (Hilbert space) orthogonal complement of the range G(A)
of A.

Proof In this case, the operator J is equal to A'KA. By Theorem 1.1,
u belongs to PhUh if and only if A'KAu = A'r~'fh' In other words, we can
write this equation in the following form:

where Z E ker(A'). (2-4)

Applying now rhO to both sides of this relation and using Eqs. (1-2)(i) and
(2-1), we deduce that

Conversely, if u is a solution of Eq. (2-5), we find that rhoAu = AhUh and
that A'KAu = Ju belongs to the range of A'r~' . Therefore, u belongs to
PhUh' It remains to prove that K-1z belongs to G(A)EB. But ker(A') is the
annihilator of the range G(A) of A, and the canonical isometry K is an
isomorphism from the (Hilbert space) orthogonal complement G(A)EB of
G(A) onto its annihilator G(A)l.. in F'.
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COROLLARY 2.1. Let us assume that the range of r"oA is closed and that

G(A)EB C P"o, (where G(A) and Pli,o are the ranges ofA andp"o, respectively.)
(2-6)

Then

Furthermore, if

(2-7)

ker A = 0 (2-8)

(where G(A,,) is the range ofA,,), then there exists a unique solution u belonging
to Phu" and the operator Ph satisfies the commutation formula (2-7).

(The proof is obvious.)
In particular, G(A)EB = 0 if the range of A is dense in F.

COROLLARY 2.2. Let us assume that the range of r"oA is closed and that

(i)

(ii)

ker(A) = 0,

Ph°G(A,,) C G(A) and r"°G(A) C G(Ah).
(2-9)

Then there exists a linear operator rhfrom V onto VII, such that

(i) Phrh is the orthogonal projector (in V) onto Ph = Ph VII, ,

(ii) Ap"r"u = Phor"oAu.

Proof. The best approximant Phr"u E Ph of u (in V) satisfies

(2-10)

for every v" E V", (2-11 )

Using the commutation formula (2-7), we deduce that

We can write this equality in the form

(2-12)

where z" belongs to ker (A,,').
(2-13)

By Eq. (2-1), we notice that we can write rho = (p~'KPhO)-lPhoK. Thus,
we have obtained the relation

where Zh E ker(A,,'). (2-14)
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Since rh,°G(A) C G(Ah,), Ah,rh,u - rh,°Au belongs to the range G(Ah,) of Ah,.
On the other hand, p~'Kph,°is the canonical isometry from Fh, onto Fh,' (when
either Fh, is supplied with the norm IPh,Ofh, I or Fh,' is supplied with the norm
I r~'fh, IF')' Therefore, when Zh, ranges over ker(Ah,') = G(Ah,Y, (p~'KPhO)-lZh,

ranges over the (Hilbert space) orthogonal complement G(Ah,)EB of G(Ah,)
inFh, .

So, rh,°Au = Ah,rh,u since

(2-15)

Therefore, Aph,rh,u = ph,°Ah,rh,u = ph,°rh,°Au.

Remark 2.2. The following result has important consequences: If
f - Ph°rh,Of converges to °in F as h -?- 0, then u - Phrh,U converges to °in
V (supplied with the seminorm II U II = I Au I).

We notice also that the convergence properties do not depend on the
choice of a particular operator Ah, (satisfying (2-9)(ii)). In particular, the
error functions of Ph, do not depend on the choice of Ah, ; if U is a subspace
of V supplied with a stronger topology, the error function euV(Ph) is defined
by

= sup [(1 - Phorh,°) Au 11[1 u Ilu·
UEU

(2-16)

Let us suppose now that V is contained in F with a stronger topology and
that both A and Ah, are isomorphisms. We thus can define the error function
evF(ph,):

evF(Ph) = sup inf I u - Ph,Vh, [III u Ilv
UEU "hEVh

and, if Vh, is a finite-dimensional space, the stability function svF(ph,):

(2-17)

svF(ph,) = sup [I Ph,Uh, Ilvl[ PhVh, I = sup IPhoAh,rh, III PhVh, [. (2-18)
"hE vh "hE vh

We have characterized these functions as eigenvalues of operators (cf.
Ref. [3]). We deduce from Theorem 3.3 of Ref. [3] and from the formula
Ph = A-1PhoAh, the following corollary

COROLLARY 2.3. Let us assume that V is contained in F with a stronger
topology and that the operators A and Ah, are isomorphisms.

Then the error function evF(Ph) and the stability function svF(Ph) depend
only on rh,oand A and are independent of the choice of the operator Ah, .
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Proof Since SVF(Ph)2 = SUP"h II PhVh II~/I PhVh 12 is achieved at a point Uh
of the unit-ball of Vh supplied with the norm IPhVh I, the functional
IPhoAhVh III IPhVh I is differentiable at Uh and its derivative vanishes (cf.
Ref. [3, Section 3]). We thus deduce that

Since Ah is an isomorphism, this amounts to saying that SVF(Ph)2 is the
largest eigenvalue of the operator (p~'A'-lKA-IPhO)-l(p~'KphO) and does not
depend on Ah •

On the other hand, the error function eVF(Ph) is equal to

sup I U - PhShU I/!I UII,
UEV

where PhSh is the orthogonal projector from F onto Ph = PhVh . It satisfies
PhSh = PhCPh'Kph)-lph'Ku. Since Ph = A-1PhoAh , we see that PhSh equals
A-lphO(P~'A'-lKA-lphO)-lp~'A'-lK and does not depend on Ah .

3. EXAMPLES

3.1. Construction of approximants of Sobolev spaces Hm(R).

We consider the situation where F = L2(R) and V is the Sobolev space
Hm(R) of functions UE VCR) such that the (weak) derivative Dmu E VCR).

We choose for A the operator Dm. This operator is one-to-one and its
range G(Dm) is dense in F.

The discrete analogues we shall choose are the spaces Vh = Fh = f2(Z)
of square sommable sequences Uh = (Uhi)iEZ defined on the ring Z of integers,
and the operator Ah = vhm of finite differences:

(3-1)

We introduce the operator rho defined by

(3-2)

The assumptions of Corollary 2.2 are satisfied: the operator Phm satisfying

(i)

(ii)
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is the operator satisfying the following commutation formula:

where Pho is defined by Eq. (2-1). A simple computation shows that
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(3-3)

(3-4)Ph°Uh = LUhieih where eih(x) is the characteristic function
of the interval (jh, (j + l)h).

But the solution of Eq. (3-3) is well known (cf. [4, 5, 7, 8, 9]).
Since Phm is an operator of the form PhmUh = L Uhi7T;"h(X) and since

PhOUh = Li (Lk akiOkh) Uh; (where aki = h-m( -l)k-i(::'-i»' we have to solve
the differential equation

Dm(7T~h(X» = L akiekh(X) = \lhmeih(X),
k

(3-5)

The solution of Eq. (3-5) is 7T;"h(X) = 7Tm«xjh) - j) where 7Tm(X) is the
(m + 1)-th fold convolution of the characteristic function of the interval (0,1).
The support of this function is contained in the interval (0, m + 1) and its
restriction to each interval (k, k + 1) is a polynomial of degree m.

Therefore, here again, "spline-functions" (i.e., piecewise-polynomial
functions) are the optimal solutions of a problem of approximation in the
Sobolev spaces Hm(R).

Remark 3.1. It is possible to replace \lhm by any other operator Ah .
In this case, the operator Ph satisfying Eqs. (3-2) or (3-4) maps also a sequence
into the space of piecewise-polynomials. By Corollary 2.2, the convergence
properties are the same. But the support of the function 7T;"h(X) will be no
longer compact.

The fact that 7Tm(X) has a compact support plays an important role. (When
these approximations are used in differential problems, the size of the
support of 7T;"h(X) is related to the number of nonzero diagonals of the
approximated matrix).

Remark 3.2. We obtain analogous results by replacing the regular
intervals (jh, (j + l)h) by irregular intervals and the operator \lhm by the
divided-difference operator (cf. [7-9].)

Remark 3.3. It is possible to replace Dm by any other nondegenerate
differential operator of order m which is one-to-one and which has a dense
range. Among the operators Ah , we would have to choose the one which
minimizes the size of the support of the functions 7Thi(X) such that PhUh =

L UI/7Thi (X). (If we choose Ah = 1, we have to solve a problem of optimal
interpolation; it is already known that, in this case, the functions 7Thi do not
have a compact support for m > 1) cf. e.g., [1,8]).
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3.2. Construction of approximants in the domain of a degenerate operator.

We shall give an example where A is a degenerate differential operator:

We choose

F = V(-I, +1),
V = {u E V(-I, +1) such that (1 - x 2) Du E V(-l, +1)}

and we take A defined by Au = (1 - x2) Du.
The discrete analogs will be

(3-6)

(3-7)

.tanhW+1)h)
(rhouY = (tanh«(j + l)h) - tanh(jh»-l J u(x) dx. (3-8)

tanh(jh)

The assumptions of Corollary 2.2 are satisfied: the operator Ph which
satisfies

(i) rh0(1 - x 2
) DphUh = VhUh,

(ii) 1(1 - x2) DphUh I <; 1(1 - X
2

) Dv I
for every v such that rhoDv = VhUh'

is the one satisfying

where Pho (defined by Eq. (2-1» satisfies

(3-8)

(3-9)

(3-10)

where Bjh is the characteristicfunction of the interval (tanh(jh), tanh((j+ l)h».
If we write PhUh in the form L: UhjTTjh(X), the function TTjh is the solution of the
differential equation

(3-11)

Thus,

TTjh(X) = h-1(arctanh(x -j» Bjh - h-1(arctanh(x - j - 2» B(i+l)h' (3-16)

Therefore, the space Ph of linear combinations of the functions TTjh is a
space of approximants of the domain (1 - x2)D which are optimal in the
sense of Eq. (3-8).
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If we use these approximants to approximate differential equations of the
form -(1 - x 2) D(a(x) Du) + 2xb(x) Du = fwhere a(x) and b(x) ?: c > 0,
we shall obtain finite-differences schemes whose matrices have 3 nonzero
diagonals (cf., e.g., [4-5], for the construction of these schemes).

This method can be applied to many other situations.

3.3. Construction of approximants in spaces offunctions of several variables.

We take F = V(Rn). Let V be the space of the functions u of V(Rn)
such that Dqu = D'ft ... D~nu belongs to V(Rn). We consider the following
operator:

(3-17)

The discrete analogs will be V" = F" = 12(zn) and the operator A"
defined by

(3-18)

We define r"o by (r"Ou)j = (hI ... hn)-I fm;h u(x) dx where

mj" = Il Ukhk , Uk + I) hk )·

Therefore the approximants hU" which satisfy

(3-19)

are the approximants defined by hU" = L u"j7Tq(x/h - j) with 7Tq{X) =
7Tq (x) .•. 7Tq (xn ) (where 7Tq{t) is the (q + I)-th fold convolution of the

1 t n

characteristic function of the interval (0, I». These approximants are studied
and used, for instance, in Refs. [4, 5].

Let us consider the case where

(Vu )j = h-I(u j _ uit-I ..... jn-I)
" " h" .

(3-20)

The spaces V, F, V", F" and the operator r"°are the same. Then the approx
imants hU" which satisfy

(i) r"ODq(DI + + Dn) hU" = 'il/V"u",

(ii) I Dq(DI + + Dn) h U" I ~ [ Dq(DI + ... + Dn)v I
for every v such that Dq(DI + ... + Dn)v = 'ilhqV"u",

(3-21)
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are the approximants defined by PhUh = L uhip-qi((xjh) -j) where

(3-22)

(These approximants were introduced in Ref. [6].)
In these two cases, the optimal approximants are piecewise-polynomials

of multi-degrees q and q + 1, respectively.
Finally, let us consider the case where

(3-23)

We introduce the following analogs:

Ah = (ak i ) is an infinite matrix. (3-24)

We consider rho defined by (rhOu)i = (hI··· hn)-l fm
ih

u(x) dx; then the
operator Pho defined by Eq. (2-1) satisfies PhOUh = L Uhi8ih' where 8ih is the
characteristic function of mih .

Then Corollary 2.2 implies that the approximants PhUh satisfying

(i)

(ii)

satisfy also

PhUh = LUhi7Tih
i

(3-25)

(3-26)

where 7Tjh = Lk akjA- 18kh(X).
Let P-m(x) = (27Tmjm!) PI(I x Im-(n/21K"m_(nI2)(27T I x [) (where K is a Bessel

function, cf. [10, p. 47]) be the fundamental solution of A. Then the approxi
mants 7Tjh are

7Tih(X) = L aki(P-m * 8kh)(X)
k

where * denotes convolution.

4. COMMUTATION FORMULA (II)

(3-27)

In this section, we assume that both A E L(V, F) and rhO E L(F, Fh) are
onto. We supply V with the norm II U II defined by the scalar product

((U, v» = (Ju, v) (4-1)
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where J is the canonical isometry from V onto V'. Then K = (AJ-IA')-l is
the canonical isometry from F onto F' when F' is supplied with the norm

II AjlfF'.
Therefore, since rho maps F onto Fh , we can associate with it the operator

Ph°defined by

which satisfies

(4-2)

(i) rh°Ph°Uh = Uh

(ii) II PhoUh IIF ~ II V IIF

for every Uh E Fh ,

for every v such that rh°v = Uh .
(4-3)

By Corollary 1.3, the solution PhUh of the problem

(i)

(ii)
(4-4)

is given by Ph = J-IA'KPhoAh . We shall give another interpretation of this
formula. Let us introduce the operator L defined by:

(Lu, v) = ((u, v» for every U E V, and every v E Z = ker A. (4-5)

The operator L maps V into the dual Z' of Z.

THEOREM 4.1. Let us assume that A and rho are surjective and that ((u, v»
is a nondegenerate scalar product of the Hilbert space V. Then the solution
PhUh of(4-4) is the solution of

(i)

(ii)

LphUh = 0,

AphUh = PhoAhUh,
(4-6)

where the operators Pho and L are defined by Eqs. (4-2) and (4-5).

Proof Since JPhUh = A'KphoUh' we deduce that

(JPhUh, v) = (LPhUh' v) = (KphOAhUh, Av) = 0 for every v E Z = ker A.
(4-7)

So LPhUh = O. On the other hand,

APhUh = (AJ-IA') KphOAhUh = K-IKPhoAhUh = PhOAhUh' (4-8)

Therefore,Phuh is the solution of the problem (4-6). Conversely, let us assume
that PhUh satisfies the problem (4.6). Since LPhUh = 0, JPhUh belongs to the
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annihilator Z.L of Z (in V'). Since Z is the kernel of A and since A is onto,
A' is an isomorphism from F' onto Z.L. Thus, there exists a unique element
BphUh of Z.L such that

(4-9)

But KAJ-l is a left inverse of A' since KAJ-IA' = KK-l = I. Applying this
operator to both members of Eq. (4-9), we deduce that

(4-10)

Thus, JPhUh = A'BPhUh = A'KphoAhUh' By Corollary 1.3, this implies
that PhUh is the solution of the problem (4-4).

Remark 4.1. Since Z' = V'/Z.L, Equation (4-6)(i) amounts to saying that

(4-11)

COROLLARY 4.1. Let us assume the hypotheses of Theorem 4. I. Let rh be
the operator from Vonto Vh such that Phrh is the orthogonal projector from V
onto Ph = PhVh . Then, ifAh is onto, thefollowing commutation formula holds:

Therefore, the projectors Phrh and Ph°rh°are related by

(4-12)

(i)

Oi)

Lphrhu = 0,

Aphrhu = PhorhoAu.
(4-13)

Proof Since (Ju - Jphrhu, PhVh) = °for any Vh E Vh , we deduce that
Ph'Ju = Ph'Jphrhu. Since Jph = A'KPh°Ah , this equation can be written in
the form

(4-14)

This implies that

(4-15)

since we have assumed that Ah is onto. Now, it is easy to check that we can
write rho = (p~'KphO)-lp~'K. Thus, Eq. (4-12) holds.

EXAMPLE 4. I. Assume that V = D(A) is the domain of a closed
unbounded operator A of a Hilbert space F (identified with its dual). We
assume, moreover, that

A maps V = D(A) onto F; (4-16)

D(A) is supplied with the graph norm II u 11 2 = (I Au I~ + I U 1~)1/2.
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Let 2 be the kernel of A. Then the operator L is defined by
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(Lu, v) = «u, v)) = (Au, Av) + (u, v) = (u, v)

We thus deduce the following corollary:

for every v E Z. (4-17)

COROLLARY 4.2. Let V be the domain of a closed unbounded operator A
of a Hilbert space F. Let us assume the conditions (4-16). Then the solution
PhUh of the problem (4-4) is the unique solution of

(i)

(ii)

(where 2 = ker A),
(4-18)

Proof By Eq. (4-6)(i), LPhUh = O. By Eq. (4-17), this amounts to

(LPhUh'V) = (PhUh, v) = 0 for every v E Z. (4-19)

This implies (4-18)(i)
Let us consider a more general situation. We assume that there exist two

continuous operators A and 0 such that:

(i)

(ii)

(iii)

A maps V onto a Hilbert space F,

omaps V onto a Hilbert space T,

V is the direct sum of Vo = ker 0 and 2 = ker A.

(4-20)

We supply the space V with the scalar product

«u, v)) = (Au, Av) + <OU, ov), (4-21)

where ( , ) and <, ) are the scalar products of F and T, respectively. Then
V is a Hilbert space for this new scalar product.

COROLLARY 4.3. Let us assume conditions (4-20) and Eq. (4-21). If rhO
maps F onto Fh , the solution PhUh of the problem (4-4) is the solution of

(i)

(ii)
(4-22)

Proof In this case, the operator L is defined by

(Lu, v) = <OU, ov) = (o'ou, v) for any v E 2. (4-23)

So the equation LPhUh = 0 is equivalent to O'OPhUh E 21..
On the other hand, 0' is an isomorphism from T' onto Vol.. Therefore,

O'OPhUh E 21. () Vol. = 0 (since Vis the direct sum of Vo and 2). This implies
that 0PhUh = O.
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